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Abstract. Current age datasets lie in a long-tailed distribution, which
brings difficulties to describe the aging mechanism for the imbalance
ages. To alleviate it, we design a novel facial age prior to guide the ag-
ing mechanism modeling. To explore the age effects on facial images, we
propose a Disentangled Adversarial Autoencoder (DAAE) to disentan-
gle the facial images into three independent factors: age, identity and
extraneous information. To avoid the “wash away” of age and identity
information in face aging process, we propose a hierarchical condition-
al generator by passing the disentangled identity and age embeddings
to the high-level and low-level layers with class-conditional BatchNorm.
Finally, a disentangled adversarial learning mechanism is introduced to
boost the image quality for face aging. In this way, when manipulating
the age distribution, DAAE can achieve face aging with arbitrary ages.
Further, given an input face image, the mean value of the learned age
posterior distribution can be treated as an age estimator. These indicate
that DAAE can efficiently and accurately estimate the age distribution in
a disentangling manner. DAAE is the first attempt to achieve facial age
analysis tasks, including face aging with arbitrary ages, exemplar-based
face aging and age estimation, in a universal framework. The qualitative
and quantitative experiments demonstrate the superiority of DAAE on
five popular datasets, including CACD2000, Morph, UTKFace, FG-NET
and AgeDB.
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1 Introduction

Facial age analysis, including face aging, exemplar-based face aging and age es-
timation, is one of the crucial components in modern face analysis for entertain-
ment and forensics. Face aging aims to aesthetically render the facial appearance
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Fig. 1. Continuous face aging results on UTKFace. The first column are the inputs
and the rest columns are the synthesized faces from 5 to 90 years old.

based on the given age, while exemplar-based face aging aims to render the fa-
cial appearance according to the age of the exemplar face. In recent years, with
the developments of the generative adversarial network (GAN) [8], impressive
progress [40, 35, 32, 18, 17, 20] has been made on face aging. Since all the existing
age datasets, such as CACD2000, Morph and UTKFace, perform a long-tailed
age distribution, it is difficult for current methods to describe the aging mech-
anism for the imbalanced age distribution. Researchers often employ the time
span of 10 years as the age clusters for face aging. This age cluster strategy
potentially limits the diversity of aging patterns, especially for the younger with
the large inter-class appearance variance.

Recently, Variational Auto-Encoder (VAE) [15] shows the promising ability
in discovering the underlying data distribution in the latent space [2], [12], [34].
Conditional Adversarial Autoencoder (CAAE) [40] proposes to learn a face man-
ifold in the latent space. With the given age label and the learned face manifold,
CAAE achieves continuous face aging. However, there are still four limitation-
s with CAAE: 1) It only focuses on the learning of the image representation
and ignores the age representation. The possibility of utilizing it to handle more
age-related analysis, such as age estimation and exemplar-based face aging, is
limited. 2) CAAE conducts face aging on the cropped faces and reckons without
the extraneous information, such as hair. 3) The identity and age embeddings
are only injected into the input layer of the generator, which leads to the “wash
away” of them during generation. 4) It still adopts a group-based training strat-
egy.

To address the mentioned issues in CAAE, we propose a Disentangled Adver-
sarial Autoencoder (DAAE). We first design a facial age distribution as the facial
age prior to directly learn the age representation from the image. A well-trained
identity classifier is also employed to supervise the identity feature learning in a
knowledge distilling way [10]. Besides, we discover it is also important to disen-
tangle the extraneous information, including hairstyle and pose, from the given
image. Following most VAE based methods, we introduce the Gaussian distri-
bution as the prior for extraneous information. Supervised by the variational
evidence lower bound (ELBO) [15, 25] and identity knowledge distillation, the
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facial images are disentangled into three independent factors: age, identity and
extraneous information. This disentangling manner makes DAAE more flexible
and controllable for facial age analysis. To avoid the “wash away” of identity
and age information during generation, we propose a hierarchical aging archi-
tecture by passing the disentangled identity and age vectors to the high-level and
low-level layers with class-conditional BatchNorm. To synthesize photo-realistic
facial images, a disentangled adversarial learning mechanism is introduced to op-
timize the inference network and the generator jointly and adversarially. Inspired
by IntroVAE [12], DAAE is expected to have the capability to self-estimate the
age accuracy, identity preserving and generation quality of the synthesized im-
ages.

Finally, by manipulating the mean value of age distribution, DAAE can easily
realize facial face aging with arbitrary ages, whether the age exists or not in the
training dataset. Further, by extracting age information from an exemplar facial
image, DAAE can achieve exemplar-based face aging. Moreover, given a face
image as input, we can easily obtain its age representation, which indicates the
ability of DAAE to achieve age estimation. As stated above, we can implement
three different facial age analysis tasks in a universal framework. To the best
of our knowledge, DAAE is the first attempt to achieve facial age analysis,
including face aging, exemplar-based face aging and age estimation, in a universal
framework. The main contributions of DAAE are as follows:

– We propose a novel Disentangled Adversarial Autoencoder (DAAE) for fa-
cial age analysis tasks, including face aging, exemplar-based face aging and
age estimation. We design two different priors as well as identity knowledge
distillation to assist disentangling the facial images into three independent
factors: age, identity and extraneous information.

– To fully utilize the disentangled low-level age, high-level identity and mixed-
level extraneous information, we propose a hierarchical conditional generator
with class-conditional BatchNorm.

– We propose a disentangled adversarial learning mechanism by training the
encoder and generator with age preserving regularization and identity knowl-
edge distillation in an introspective adversarial manner.

– Extensive qualitative and quantitative experiments demonstrate that DAAE
successfully formulates the facial age prior in a disentangling manner, ob-
taining state-of-the-art results on the five popular datasets.

2 Related Work

2.1 Face Aging

Recently, deep conditional generative models have shown considerable ability
in face aging [40, 32, 18, 17]. Zhang et al. [40] propose a Conditional Adversar-
ial Autoencoder(CAAE) to transform an input facial image to the target age.
Yang et al. [35] propose a pyramid GAN to simulate the aging effects in a fin-
er manner. To capture the rich textures in the local facial parts, Li et al. [18]
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Fig. 2. Overview of the architecture and training flow of our approach. Our model
contains two components, the inference network E and the hierarchical generative
network G. X, Xr and Xs denote the real sample, the reconstruction sample and the
new sample, respectively. Please refer to Section 3 for more details.

propose a Global and Local Consistent Age Generative Adversarial Network
(GLCA-GAN). Meanwhile, Identity-Preserved Conditional Generative Adver-
sarial Networks (IPCGAN) [32] introduces an identity-preserved term and an
age classification term into face aging. Liu et al. [20] imposes attribute informa-
tion to guide the aging process and proposes a wavelet-based discriminator to
encourage generation quality. Although these methods have achieved promising
visual results, they have limitations in discovering the disentangled factors in
face aging. Besides, the image and age label are only injected into the input
layer of the generator, leading to the “wash away” of image and age informa-
tion during generation. For non-deep learning methods, [28] demonstrates that
disentangling the common and individual components in facial images is cru-
cial for face aging. [22] proposes Multi-Attribute Robust Component Analysis
(MA-RCA) that incorporates knowledge from age and identity for age progres-
sion. In this paper, benefiting from the proposed VAE-based method, we focus
on disentangling facial images into three independent factors: age, identity and
extraneous information.

2.2 Variational Autoencoder

Variational Autoencoder (VAE) [15, 25] consists of two networks: an inference
network qφ (z|x) maps the data x to the latent variable z, which is assumed as
a gaussian distribution, and a generative network pθ (x|z) reversely maps the
latent variable z to the visible data x. The object of VAE is to maximize the
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variational lower bound (or evidence lower bound, ELBO) of log pθ (x):

log pθ (x) ≥ Eqφ(z|x) log pθ (x|z)−DKL (qφ (z|x) ||p (z)) (1)

VAE has shown promising ability to generate complicated data, including
faces [12], natural images [9], text [29] and segmentation [11, 30]. Inspired by
IntroVAE [12], we propose a disentangled adversarial learning mechanism, which
self-estimates the age accuracy, identity preserving and generation quality of the
synthesized images.

2.3 Age Estimation

Age estimation aims to automatically label a given face with an exact age or age
group [19]. Ranking-CNN and label distribution learning (LDL) based age esti-
mation achieve state-of-the-art performance. Ranking-CNN consists of a series
of CNNs, each of which learns a binary classification. Then these binary values
are aggregated for the final result [4]. To model the correlations among different
ages, label distribution learning [6] utilizes a specific distribution to formulate
the aging mechanism. Inspired by it, we design a new age distribution as the
facial age prior to directly learn the age information from the image. In this
way, the mean value of the learned age posterior distribution can be treated as
an age estimator.

3 Approach

In this paper, we propose a Disentangled Adversarial Autoencoder (DAAE) for
face aging, examplar-based aging and age estimation. The key idea is to dis-
entangle the facial image into three independent factors, i.e., age, identity and
extraneous information. A hierarchical aging generator is introduced to produce
photo-realistic images by transferring the identity and age information sequen-
tially. As depicted in Fig. 2, two different priors as well as identity distillation are
assigned to regularize the inferred representations. The inference network E and
the generator network G are trained in an introspective disentangling manner.

3.1 Disentangled Variational Representations

In the original VAE [15], a probabilistic latent variable model is learned by max-
imizing the variational lower bound to the marginal likelihood of the observable
variables. However, the latent variable z is difficult to interpret and control, since
each element of z is treated equally in training. To alleviate this, we manually
split z into three parts, i.e., zA representing the age information, zI representing
the identity information, and zE representing the extraneous information.

Assume that zA, zI and zE are independent on each other, then the posterior
distribution can be written as: qφ (z|x) = qφ (zA|x) qφ (zI |x) qφ (zE |x). The prior
distribution p (z) = pA (zA) pI (zI) pE (zE), where pA (zA), pI (zI) and pE (zE)
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are the prior distributions for zA, zI and zE , respectively. According to Eq. (1),
the optimization objective for the modified VAE is to maximize the lower bound
of log pθ (x):

log pθ (x) ≥Eqφ(zA,zI ,zE |x) log pθ (x|zA, zI , zE)

−DKL (qφ (zA|x) ||pA (zA))

−DKL (qφ (zI |x) ||pI (zI))

−DKL (qφ (zE |x) ||pE (zE)) ,

(2)

where the first item regularizes the reconstruction accuracy, and the last three
regularize the latents, i.e., zA, zI and zE , to learn different types of facial infor-
mation.

To capture facial aging characteristics, the prior pA (zA) for zA is designed as
a facial aging-specific distribution. It is set to be a centered isotropic multivariate
Gaussian, i.e., pA (zA) = N (y, I), where y is a vector filled by the age label y of x.
We assume the posterior qφ (zA|x) also follows a centered isotropic multivariate
Gaussian, i.e., qφ (zA|x) = N

(
zA;µA, σ

2
A

)
. As depicted in Fig. 2, µA and σA are

the output vectors of the inference network E. The input zA for the generator
G is sampled from N

(
zA;µA, σ

2
A

)
using a reparameterization trick, i.e., zA =

µA + εA � σA, where εA ∼ N (0, I). The negative version of the second term in
Eq. (2) can be formed as

L
(age)
kl =

1

2

CA∑
i=1

((µiA − y)2 + (σiA)2 − log((σiA)2)− 1), (3)

where y is the age label of the input x and CA denotes the dimension of zA.
Noted that (µiA − y)2 in Eq. (3) can be viewed as an L2 constraint between the
predicted µA and the age label y, which leads to the capability of the proposed
method to estimate facial age.

For the difficulty in modeling the identity space with a simple distribution,
the prior pI (zI) is obtained through a well-pretrained identity classifier C. As-
sume that for each z ∈ pI (zI), there exists a facial image x satisfying that
z = F (x), where F (x) is the extracted feature before the softmax layer in C.
We employ a paired L1 loss function between the predicted zI and the extract-
ed feature F (x) to describe the relations between the posterior qφ(zI |x) and the
prior pA(zA). The paired L1 loss distills the identity knowledge from the identity
classifier C to the inference network E, where C and E can be regarded as the
teacher net and student net in knowledge distilling [10], respectively. This loss
function is formed as

L
(id)
kd =

CI∑
i=1

|ziI − F (x)|, (4)

where zI and F (x) are extracted from the same image x by the inference network
E and the identity classifier C, and CI denotes the dimension of zI .

Following the original VAE [15], we set the prior pE (zE) = N (0, I) and the
posterior qφ (zE |x) = N

(
zE ;µE , σ

2
E

)
. Similar to Eq. (3), the negative version of
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the last term in Eq. (2) can be reformed as

L
(ext)
kl =

1

2

CE∑
i=1

((µiE)2 + (σiE)2 − log((σiE)2)− 1), (5)

where µE and σE are the output vectors of E, CE denotes the dimension of zE .
The reconstruction term in Eq. (2) can be optimized by the following form

Lrec =
1

2
‖x− xr‖2F , (6)

where x and xr are the input and output images, respectively.
In summary, the optimization object in Eq. (2) can be rewritten in the neg-

ative version:
Lvae = Lrec + L

(age)
kl + L

(id)
kd + L

(ext)
kl . (7)

3.2 Hierarchical Conditional Generator

In order to effectively utilize the disentangled low-level age, high-level identity
and mixed-level extraneous information (e.g., pose, skin color), we propose a hi-
erarchical conditional generator, borrowing from Conditional Batch Normaliza-
tion (CBN) [5] literature. We regard all of the age, identity and most extraneous
information as the conditions for face aging.

We first split the extraneous information into several parts and the first part
is regarded as the input of the generator. Since extraneous information contains
both high-level (e.g., pose) and low-level (e.g., skin color) information, the rest
parts are concatenated with identity or age information and used as the condition
information at each residual block. As shown in Fig. 2, identity with extraneous
information is passed into the first few layers for high-level identity generation,
while age with another extraneous information is passed into the last few lay-
ers for low-level texture generation. With the proposed hierarchical conditional
generator, the proposed DAAE enables higher intuition and interpretability.

3.3 Disentangled Adversarial Learning

To further disentangle the inferred representations, i.e., zA, zI and zE , and im-
prove the quality of generation, a disentangled adversarial learning mechanism
is proposed to optimize the inference network E and the generator network G
jointly and adversarially. Inspired by IntroVAE [12], the model is expected to
have the capability to self-estimate the age accuracy, identity preserving and
image quality of the produced images.

As illustrated in Fig. 2, there exist two types of generated images, i.e., the re-
constructed image xr = G(zA, zI , zE) and the sampled image xs = G(ẑA, ẑI , ẑE).
zA, zI and zE are the inferred representations of the input x, while ẑA, ẑI
and ẑE are sampled from three marginal product distribution, i.e., pA(ẑA) =
pA(zA)qφ(zA|x), pI(ẑI) = pI(zI)qφ(zI |x), pE(ẑE) = pE(zE)qφ(zE |x), respective-
ly. This sampling strategy makes a random combination of age, identity and
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extraneous information from different sources. Along with the introduced con-
straints in the following, the learned representations zA, zI and zE can be well
disentangled.

To preserve the aging and identity characteristics accurately, two regulariza-
tion terms are introduced for the generator G. They are computed as

L(age)
reg =

1

CA

CA∑
i=1

‖z
′i
A − zA‖+

1

CA

CA∑
i=1

‖z
′′i
A − ẑA‖ (8)

L(id)
reg =

1

CI

CI∑
i=1

‖z
′i
I − zI‖+

1

CI

CI∑
i=1

‖z
′′i
I − ẑI‖ (9)

where z
′

A and z
′

I are the inferred representations from the generated images xr,

while z
′′

A and z
′′

I are inferred from the generated images xs.
To alleviate the problem of generating blurry samples in VAEs, the KL dis-

tance in Eq. (5) is employed as the adversarial signal to train the inference
network E and the generator G adversarially [12]. When training E, the model
minimizes the KL-distance of the posterior qφ (zE |x) from its prior pE (zE) for
the real data and maximize it for the generated samples. When training G, the
model minimizes this KL-distance for the generated samples. The adversarial
training objects for E and G are defined as below:

L
(adv)
E =L

(ext)
kl (µE , σE) + α{

[
m− L(ext)

kl (µ′E , σ
′
E)
]+

+
[
m− L(ext)

kl (µ′′E , σ
′′
E)
]+
},

(10)

L
(adv)
G = L

(ext)
kl (µ′E , σ

′
E) + L

(ext)
kl (µ′′E , σ

′′
E) , (11)

where m is a positive margin, α is a weighting coefficient, (µE , σE), (µ′E , σ
′
E) and

(µ′′E , σ
′′
E) are computed from the real data x, the reconstruction sample xr and

the new samples xs, respectively. []+ = max(0, .), which has the same meaning
in hinge loss.

The total objective function is a weighted sum of the above losses, defined as

LE = Lrec + λ1L
(age)
kl + λ2L

(id)
kd + λ3L

(adv)
E , (12)

LG = Lrec + λ4L
(age)
reg + λ5L

(id)
reg + λ6L

(adv)
G , (13)

where λ1∼6 are the weighted parameters to balance the importance of each loss.

3.4 Inference and Sampling

By regularizing the disentangled representations with the age prior pA (zA) =
N (y, I), identity knowledge prior pR (zI) and extraneous prior pE (zE) = N (0, I),
DAAE is thus a universal framework for face aging, exemplar-based face aging
and age estimation.
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Face Aging. We concatenate the identity variable zI , the extraneous variable
zE and a target age variable ẑA as the input of the generator G, where zI and
zE are the inferred identity and extraneous information from the input x, while
ẑA is sampled from a distribution pA (zA) = N (y, I). The face aging result x̂ is
written as:

x̂ = G (ẑA, zI , zE) (14)

Exemplar-based Face Aging. We remain the identity and extraneous in-
formation unchanged, and transfer the age information from the given exemplar
xe. Specifically, we concatenate the identity variable zI , the extraneous variable
zE and the age variable zA e as the input of G, where zA, zI and zA e are from
the posterior distribution qφ(zA|x), qφ(zI |x) and qφ(zA e|xe), respectively. The
exemplar-based face aging result is formulated as:

x̂ = G (zA e, zI , zE) (15)

Age Estimation. We calculate the mean value of C-dimension vector µA
as the age estimation result, defined as:

ŷ = 1
C

C∑
i=1

µiA (16)

where µA is one of the output vectors of the inference network E.

4 Experiments

4.1 Datasets and Settings

Datasets We conduct experiments on five popular datasets. CACD2000 [3]
consists of 163,446 color facial images of 2,000 celebrities, where the ages range
from 14 to 62 years old. However, there are many dirty data in it, which leads to a
challenging model training. Morph [26] is the largest publicly available dataset
collected in the constrained environment. It contains 55,349 color facial images
of 13,672 subjects with ages ranging from 16 to 77 years old. UTKFace [38] is
a large-scale facial age dataset with a long age span, which ranges from 0 to 116
years old. It contains over 20,000 facial images in the wild. We employ classical
80-20 split on CACD2000, Morph and UTKFace. FG-NET [16] contains 1,002
facial images of 82 subjects. We employ it as the testing set to evaluate the
generalization of DAAE. AgeDB [21] is a manually collected database, which
consists of 16,488 images of 568 subjects from 0 to 101 years old.

Experimental Settings Following [17], we employ the multi-task cascaded
CNN [37] to detect the faces. All the facial images are cropped and aligned into
224 × 224. Our model is implemented with Pytorch. During training, we choose
Adam optimizer [14] with β1 of 0.9, β2 of 0.99, a fixed learning rate of 2× 10−4

and batch size of 16. The trade-off parameters λ1∼6 are all set to 1, 100, 1, 100,
100, 1, respectively. Besides, m is set to 200 and α is set to 0.5. More details of the
network architectures and training processes are provided in the supplementary
materials.
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Fig. 3. Face aging results on CACD2000 (the first two rows) and Morph (the last two
rows). For each subject, the first column is the input and the rest four columns are the
synthesized results in 30, 40, 50 and 60 years old, respectively.

Fig. 4. Face aging results on UTKFace and FG-NET. (a) shows the aging results on
UTKFace from 0 to 110 years old. The first image (top left) is the input, the rest are
the synthesized results. (b) shows cross-dataset face aging results on FG-NET.

4.2 Qualitative Evaluation of DAAE

Face Aging By manipulating the mean value µA and sampling from age dis-
tribution, the proposed DAAE can generate facial images with arbitrary ages
based on the input. Fig. 3 presents the face aging results on CACD2000 and
Morph, respectively. We observe that the synthesized faces are getting older
and older with ages growing. Specifically, the face contours become longer, the
beards turn white and the nasolabial folds are deepened. Since both CACD2000
and Morph lack of images of children, we conduct face aging on UTKFace. Fig.
4 (a) describes the aging results on UTKFace from 0 to 110 years old. Obvi-
ously, from birth to adulthood, the aging effect is mainly shown on craniofacial
growth, while the aging effect from adulthood to elder is reflected on the skin
aging, which is consistent with human physiology. To evaluate the model gener-
alization, we train our DAAE on UTKFace and test it on FG-NET. The aging
results are shown in Fig. 4 (b). The left image of each subject is the input and
the rest seven are the generated results from 5 to 100 years old.

The comparison results with previous works, including IAAP [13], RFA [31],
RJIVE [28], MA-RCA [22], IPCGANs [32], CAAE [38], Yang et al. [35], GLCA-
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Fig. 5. Comparison with the previous works. The first row is the input face. The second
row are the synthesized results of previous methods. The last row are the synthesized
results by our DAAE.

GAN [18], waveletGLCA-GAN [17] and Liu et al. [20] are depicted in Fig. 5. We
can see that our DAAE generates more obvious or comparable age effects on the
input. Besides, previous face aging methods roughly divide the data into four or
nine age groups to four or nine times increase the training data for specific age
groups, while our DAAE is trained with original age labels.

4.3 Quantitative Evaluation of DAAE

(a) on Morph (b) on CACD2000

Method Input AG1 AG2 AG3 Input AG1 AG2 AG3
CAAE [40] - 28.13 32.50 36.83 - 31.32 34.94 36.91
Yang et.al [35] - 42.84 50.78 59.91 - 44.29 48.34 52.02
GLCA-GAN [18] - 43.00 49.03 54.60 - 37.09 44.92 48.03
Liu et al. [20] - 38.47 47.55 56.57 - 38.88 47.42 54.05

Ours - 37.46 49.40 59.67 - 39.21 46.38 51.66

Real Data 28.19 38.89 48.10 58.22 30.73 39.08 47.06 53.68

Table 1. Comparisons of the aging accuracy on Morph and CACD2000.

Aging Accuracy Aging accuracy is an essential quantitative metric for face
aging. Following [35, 18], we utilize the online face analysis tool of Face++ [1]
to evaluate the ages of the synthesized results on Morph and CACD2000. We
divide the testing data of the two datasets into four age groups: 30-(AG0), 31-
40(AG1), 41-50(AG2), 51+(AG3). We choose AG0 as the input and synthesize
images in AG1, AG2 and AG3. Then we estimate the ages of the synthesized
images and calculate the average ages for each group. As shown in Table 1, we
compare the DAAE with previous works on Morph and CACD2000. We observe
that the generated ages by DAAE are closer to the real data than by CAAE [40]
as well as GLCA-GAN [18], and comparable to [35, 20]. Note that [35, 20] need
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to train a specific model for each age group, while DAAE trains a unified model
for arbitrary age synthesis, as well as other tasks.

(a) on Morph (b) on CACD2000

Method Input AG1 AG2 AG3 Input AG1 AG2 AG3
CAAE [40] - 15.07 12.02 8.22 - 4.66 3.41 2.40
Yang et al. [35] - 100.00 98.91 93.09 - 99.99 99.81 98.28
GLCA-GAN [18] - 97.66 96.67 91.85 - 97.72 94.18 92.29
Liu et al. [20] - 100.00 100.00 98.26 - 99.76 98.74 98.44

Ours - 99.48 99.36 99.36 - 99.24 99.19 99.19

Table 2. Comparisons of the face verification results(%) on Morph and CACD2000.

Identity Preserving Identity preserving is another important quantitative
metric for face aging. We evaluate this performance of DAAE by face verification.
We also choose AG0 as the input and synthesize images in AG1, AG2 and
AG3. For each testing face in AG0, we evaluate the verification rates between
it and its corresponding aging results: [testing face → Age1], [testing face →
Age2] and [testing face → Age3]. We adopt Light-CNN [33] as the identity
extractor. Following [35, 20], we adopt thresholds=76.5 and FAR=1e-5 in our
face verification experiments. The comparison results on Morph and CACD2000
are reported in Table 5. It is worth noting that it is unfair to directly compare
DAAE with [20]. Because [20] utilizes extra attribute labels, including gender
and race, to improve aging performance. Besides, [35, 20] need to train a specific
model for each age group.

Age-Invariant Face Verification Following the testing protocol in [28], we
evaluate our method on AgeDB. As shown in Table 3, DAAE achieves promising
performance of face verification on AgeDB. The qualitative results are reported
in the supplementary materials.

5 years 10 years 20 years 30 years

RJIVE [28] AUC 0.686 0.654 0.633 0.584
Accuracy 0.637 0.621 0.598 0.552

Ours AUC 0.989 0.988 0.986 0.981
Accuracy 0.969 0.969 0.956 0.953

Table 3. Comparisons of Mean AUC and Accuracy on AgeDB.
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Fig. 6. Exemplar-based face aging results on Morph. For each image group, the first
row are the input and the second row are the aging results with age information zA
exchanged in the group.

4.4 More Facial Age Analysis by DAAE

The previous face aging methods [40, 32, 18, 17] directly concatenate an age label
to control the aging process, which are limited in handling various age analysis.
Benefiting from the disentangling and modeling of age, identity and extraneous
representations in the latent space, the proposed DAAE is able to realize more
age-related tasks, such as exemplar-based face aging and age estimation.

Exemplar-based Face Aging Given an exemplar image xe, the DAAE first
extracts its age information zA e and then transfers it to the input x. Fig. 6
presents some results under this situation on Morph. We observe that the iden-
tity and extraneous information are preserved across rows, and the age informa-
tion, such as wrinkles and beards, is changed according to the given exemplar.
This demonstrates that our DAAE effectively disentangles age and age-irrelevant
representations in the latent space.

Age Estimation To further demonstrate the disentangling ability of DAAE, we
conduct age estimation on Morph. We detail the evaluation metrics in the sup-
plementary materials. Following [24], we report the mean absolute error (MAE).
As shown in Table 4, the age estimation result of DAAE on Morph is nearly as
good as the state-of-the-arts, which demonstrates that the age representation is
well learned from the given image.

4.5 Ablation Study

We report face verification results of DAAE and its five variants for a comprehen-
sive comparison as the ablation study. Table 5 presents the comparison results.
For the setting I, age with extraneous information is passed into the first few
layers of the generator, while identity with another extraneous information is
passed into the last few layers. For the setting II, we concatenate the age, iden-
tity and extraneous vectors and send it to the input layer of the generator. We
observe that the face verification accuracy will decrease when one of the three
losses is removed or the generator’s architecture is changed. These phenomena
indicate that each component in our method is essential for face aging.
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Methods Pre-trained Morph

OR-CNN[23] - 3.34
DEX[27] IMDB-WIKI 2.68
Ranking [4] Audience 2.96
Posterior[39] - 2.87
SSR-Net[36] IMDB-WIKI 2.52
M-V Loss[24] - 2.51
ThinAgeNet [7] MS-Celeb-1M 2.35

Ours - 2.23

Table 4. Comparisons with state-of-the-art methods on Morph. Lower MAE is better.

Testing Face AG1 AG2 AG3

w/oLadv 95.74 95.61 95.60

w/oL
(age)
reg 97.84 97.89 97.89

w/oL
(id)
reg 96.21 93.01 93.09

Setting I 89.04 87.35 87.35
Setting II 76.10 72.20 72.15

Ours 99.48 99.36 99.36

Table 5. Face verification results(%) of the ablation study on Morph.

5 Conclusion

This paper proposes a Disentangled Adversarial Autoencoder (DAAE) for facial
age analysis. Specifically, we assign two different priors as well as identity dis-
tillation to assist disentangling the facial images into three independent factors:
age, identity and extraneous information. A hierarchical conditional generator
is introduced to produce photo-realistic images by transferring the identity and
age information layer-by-layer. Finally, we propose a disentangled adversarial
learning mechanism by training encoder and generator with age preserving reg-
ularization and identity knowledge distillation in an introspective adversarial
manner. To the best of our knowledge, DAAE is the first attempt to achieve facial
age analysis, including face aging, exemplar-based face aging and age estimation
in a universal framework. This indicates that DAAE can efficiently formulate
the facial age prior, which contributes to interpretable facial age manipulation.
The qualitative and quantitative experiments demonstrate the superiority of the
proposed DAAE on five popular datasets.
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