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a b s t r a c t 

Age estimation of unknown persons is a challenging pattern analysis task due to the lack of training 

data and various ageing mechanisms for different individuals. Label distribution learning-based methods 

usually make distribution assumptions to simplify age estimation. However, since different genders, races 

and/or any other characteristics may influence facial ageing, age-label distributions are often complicated 

and difficult to model parametrically. In this paper, we propose a label refinery network (LRN) with two 

concurrent processes: label distribution refinement and slack regression refinement. The label refinery 

network aims to learn age-label distributions progressively in an iterative manner. In this way, we can 

adaptively obtain the specific age-label distributions for different facial images without making strong 

assumptions on the fixed distribution formulations. To further utilize the correlations among age labels, 

we propose a slack regression refinery to convert the age-label regression model into an age-interval 

regression model. Extensive experiments on three popular datasets, namely, MORPH Album2, ChaLearn15 

and MegaAge-Asian, demonstrate the superiority of our method. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

Recently, age estimation has attracted much attention in many

eal-world applications, such as video surveillance, product recom-

endations, and internet safety for minors. It aims to label a given

ace image with an exact age or age group. Since significant intra-

lass variations in facial appearances caused by the ageing process

xist, a cross-age facial task is a cross-domain problem. It is impor-

ant to represent age features accurately and robustly [1,2] . In the

ast several decades, impressive progress [3,4] has been made on

ge estimation. However, it is still a challenging problem for the

ollowing reasons: 1) humans with different genders and/or races

ariances age in different ways [5,6] . 2) Considering facial images,

any large variations, including illumination, poses, expressions,

nd makeup, would affect the accuracy of age estimation. 3) It is

ard to obtain an accurate ground-truth age for the training data. 

Existing age estimation methods can be roughly divided into

our categories: regression [7,8] , multi-class classification [4,9] ,

anking convolutional neural networks (ranking-CNNs) [10] , and la-

el distribution learning (LDL) methods [11,12] . By estimating the
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ge distribution, label distribution learning has the potential ben-

fits of addressing the relevance and uncertainty among different

ges. In addition, label distribution learning can improve data uti-

ization because each facial image provides information not only

bout the chronological age but also its neighbouring ages. 

However, label distribution learning for age estimation still

aces two major challenges. First, we argue that age-label distri-

utions are often complicated and vary across individuals; thus, it

s inappropriate to make assumptions on their distributions [12–

4] . Fig. 1 depicts the detailed interpretation of this concept. In

ig. 1 (a), we can observe that the ageing tendencies are differ-

nt at different ages. The ageing rate for younger and older peo-

le are fast, while it tends to be relatively slow for middle-aged

eople [15,16] . Thus, it is unreasonable to assume that the age-

abel distributions for all ages obey Gaussian distributions with the

ame standard deviation, as shown in Fig. 1 (b). Therefore, some re-

earchers propose assigning Gaussian distributions with different

tandard deviations to facial images of different ages [15] . How-

ver, since ageing is a unidirectional and irreversible process, hu-

ans of different genders and/or races have different facial char-

cteristics. In addition, considering facial images, many variations,

ncluding illumination, pose, expressions, and makeup, can also

ead to different age distributions. Therefore, it is unreasonable

o assume that the age-label distribution is a symmetric Gaus-

ian distribution, as shown in Fig. 1 (c). The second challenge is

hat the age-inference process of label distribution learning is often
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Fig. 1. Different label distribution assumptions for age estimation. (a) The ageing speeds for younger and older people are faster than that for middle-aged people. (b) 

Assumption that the age-label distribution obeys X ~ N ( μ, σ 2 ), where σ is the same for all ages. (c) Assumption that the age-label distribution obeys X ~ N ( μ, σ 2 ), where σ

is different at different ages. (d) Learned distribution X by the proposed method. 
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(  
regarded as a classification task in which the relationships among

the age classes are not considered. For example, given a facial im-

age whose ground-truth age is 35 years old, the final predicted age

of 3 or 34 years old is the same as the inference stage. 

To address the first challenge, we propose a label distribution

refinery that is similar in form to knowledge distillation [17,18] .

The proposed label distribution refinery utilizes a convolutional

neural network to adaptively learn age-label distributions from

the given facial images and constantly refine the learning results

during refinement. Fig. 1 (d) shows the learned distribution. It is

clear that the age-label distributions vary from different individ-

uals and are asymmetric. For the second challenge of label dis-

tribution learning, we propose a concurrent training mechanism

to jointly perform label distribution learning and regression. The

regression model can capture correlations among age labels and

regress on the age value, which ameliorates the second challenge.

In addition, a slack term is designated to further convert the age-

label regression model into an age-interval regression model. 

The main contributions of this work are as follows: 

(1) In this paper, we propose a label refinery network (LRN)

with two concurrent processes: label distribution refinement and

slack regression refinement. 

(2) The proposed label distribution refinery adaptively esti-

mates the age distributions without making strong assumptions

about the form of the label distribution. Benefiting from the con-

stant refinement of the learning results, the label distribution re-

finery generates more precise label distributions. 
(3) To further utilize the correlations among different age la-

els, we introduce regression to assist label distribution refinery.

n addition, we introduce a slack term to further convert the age-

abel regression model into an age-interval regression model. 

(4) We evaluate the effectiveness of the proposed LRN on three

ge estimation benchmarks and consistently obtain state-of-the-art

esults. 

. Related work 

.1. Age estimation 

Considering hand-crafted features, one of the earliest automatic

ge estimation methods based on facial images can be traced back

o 1994 and was proposed by Kwon and Lobo [19] . Over the past

ew years, many researchers have focused on facial age estimation.

n the early stage, age estimation frameworks typically contained

wo main stages: ageing feature representation and age inference.

any ageing-feature representation approaches were proposed,

hich can be roughly divided into geometric facial representation-

ased methods [20,21] , appearance-based methods [22–24] , and

ubspace learning-based methods [25–27] . Hybrid features, which

re a combination of global and local features [28] , have gained

uch attention in age estimation. To obtain a highly discrimina-

ive feature representation for age estimation, Pontes et al. [29] in-

egrates active appearance models (AAMs), local binary patterns

LBP), Gabor wavelets (GW), and local phase quantization (LPQ)
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i  
n an unified framework. Age inference approaches fall into three

ategories: classification-based methods [30,31] , regression-based

ethods [22,23,32] and a combination of these two age estimation

ethods [26] . To capture the complicated ageing process, Chao

t al. [33] proposes an age-oriented local regression algorithm. 

Benefiting from deep convolutional neural networks (e.g., VGG-

6 [34] , LightCNN [35] , ResNet [36] and DenseNet [37] ) trained

n large-scale age face datasets, the deep learning-based age es-

imation methods achieve promising performance on age estima-

ion, which can be roughly divided into four categories: regression

7,8] , multi-class classification [4,9] , ranking convolutional neural

etwork (ranking-CNN) [10] , as well as label distribution learning

LDL) methods [11,12] . Since each age (age group) can be regarded

s a category, some researchers propose transforming age estima-

ion into a multi-classification problem in which different ages (age

roups) are regarded as independent classes. For example, Liu et al.

38] splits ordinal ages into a set of discrete groups and proposes

 group-aware deep feature learning approach for age estimation.

owever, multi-class classification methods usually neglect the rel-

vance and uncertainty among the neighbouring labels. To better

t the ageing mechanism, a natural idea is to treat age estimation

s a regression task since there is a correlation among different

ges. As mentioned in [4,39,40] , due to the presence of outliers,

egression methods cannot achieve satisfactory results either. Re-

ently, ranking-CNN and LDL methods achieve state-of-the-art per-

ormance on age estimation, in which an individual classifier or

abel distribution for each age class is adopted. In this paper, we

mploy the LDL-based method assisted with regression. 

.2. Label distribution learning 

Label ambiguity and redundancy hinder improvement in ob-

ect recognition and classification performance. Label distribution

earning [41,42] aims to address this problem by learning the dis-

ribution over each label from the description of the instance. Label

istribution learning has been widely used in many applications,

uch as expression recognition [43] , public video surveillance [44] ,

nd age estimation. 

Considering age estimation, label distribution learning utilizes a

pecific distribution to formulate the age label for each sample in

he training dataset. Some researchers [42] introduce label distri-

ution learning to alleviate the limited training data for age esti-

ation. In this way, each face image is labelled by its chronological

ge and its neighbouring ages so that it can contribute not only to

he chronological age but also to its neighbouring ages. Geng et al.

16] argue that the facial ageing process is significantly different at

ifferent ageing stages; therefore, they propose two adaptive label

istribution learning algorithms to automatically learn a proper la-

el distribution for each age. Yang et al. [13] generate a Gaussian

ge distribution and utilize KL divergence to measure the gener-

ted Gaussian distribution and the predicted distribution for each

acial image. Furthermore, Yang et al. [14] propose sparsity condi-

ional energy label distribution learning (SCE-LDL), which utilizes

n energy function to define the age distribution. Semi-supervised

daptive label distribution learning (SALDL) [15] follows [16] and

ndicates that the utilization of unlabelled data would improve la-

el distribution learning. In this way, they further propose semi-

upervised adaptive label distribution learning, which uniformly

ombines a semi-supervised process and an adaptation process via

he label distribution. Gao et al. [12] argue that there is an incon-

istency between the training objectives and evaluation metrics in

revious label distribution learning methods. Therefore, they pro-

ose an expectation regression module in the inference stage to

lleviate the inconsistency. 

Many previous works [11,14,15] assume that the age-label dis-

ribution is consistent with a fixed-form label distribution. How-
ver, since age characteristics for different genders and/or races

re diverse, a fixed-form age distribution is usually not sufficiently

exible to represent complicated facial image domains. To address

his problem, He et al. [5] propose a data-dependent label distribu-

ion model that constructs the label distribution of the instance by

earning the cross-age correlation among its context-neighbouring

ace samples. However, this method [5] has limitations in repre-

enting learning. 

Recently, Hessam et al. [45] propose automatically modifying

he discrete labels for image classification. In contrast, we propose

 label distribution refinery to adaptively learn the mapping from

he given instance to its continuous age distribution. 

. Our approach 

In this section, we first give the problem definition in

ection 3.1 . Then, we describe the two components in the

roposed label refinery network (LRN) in Section 3.2 and

ection 3.3 . Finally, we detail the training and testing procedures

n Sections 3.4 and 3.5 , respectively, followed by a description of

he network architecture in Section 3.6 . 

.1. Problem formulation 

In the setting of the LRN, we define L = [ l 1 , l 2 , · · ·, l k ] as the

ges in the training set, where l 1 and l k are the minimal and

aximal ages, respectively. Suppose S = { ( x, o, y, l ) } is the training

et, where we omit the instance indices for simplification. Among

hem, x denotes the input instance, and l ∈ L is the age of x. o

epresents the corresponding one-hot vector of l and y denotes the

ormalized age label, which is formulated as: 

 = ( l − l 1 ) / ( l k − l 1 ) (1) 

e are interested in learning a mapping from the instance x to its

ccurate age l . 

In this paper, we propose a label refinery network (LRN) with

wo concurrent processes: label distribution refinement and slack

egression refinement. The overall framework of the LRN is de-

icted in Fig. 2 . We first obtain an initial ancestor LRN. Then, with

he experience and knowledge transferred by the ancestor LRN, the

ffspring LRN utilizes and incrementally refines itself to achieve

etter performance. After each refinement, the offspring LRN will

e treated as the new ancestor LRN for the next refinement. The

redicted age is obtained only with the last LRN. 

.2. Label distribution refinery 

Previous research usually makes strong assumptions on the

orm of the label distributions, which are usually inaccurate and

nflexible to reflect the actual age-label distributions. In this sec-

ion, we address this problem by introducing a label distribution

efinery, a solution that uses a neural network to adaptively and

rogressively estimate the age-label distributions during refine-

ent. 

The initial ancestor LRN R θ1 
takes the given instance x as the

nput and learns to predict the age-label distribution of x . Then,

he offspring LRN R θ2 
inherits all the age-label distributions from

ts ancestor LRN R θ1 
and updates itself over the entire training set

 to further improve its performance. After each refinement, the

ffspring LRN R θ t 
will be treated as the new ancestor for the next

RN R θt+1 
. 

.2.1. The initial ancestor 

We first utilize the initial ancestor R θ1 
to adaptively learn the

nitial age-label distributions. Specifically, given an input instance
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Fig. 2. Overview of the proposed label refinery network for age estimation. The initial ancestor network takes the given instance as the input and produces the initial 

age-label distribution as well as the initial regressed age. The offspring network inherits the adaptively learned age-label distribution and the absolute difference between 

the regressed age and the ground-truth age of its ancestor to boost itself. 
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x , R θ1 
learns the mapping from x to the logit z 1 by: 

z 1 = 

(
W 

1 
ldl 

)T 
f 1 + b 1 

ldl 
, z 1 ∈ R 

k (2)

where f 1 is the output of the last pooling layer of R θ1 
, W 

1 
ldl 

and

b 1 
ldl 

are the weights and biases of the fully connected layer, respec-

tively. 

The predicted age-label distribution p 1 ∈ R k can be formulated

as: 

p 1 i = 

exp 

(
z 1 

i 
/τ

)
∑ 

j exp 

(
z 1 

j 
/τ

) (3)

where τ is the temperature parameter, dominating the softness of

the predicted distribution. The larger τ is, the softer the obtained

distribution. We employ cross-entropy as the supervised signal to

learn the initial ancestor for the label distribution refinery: 

L 1 ce = −∑ 

i 

o i ln p 1 
i (4)

where o i denotes the i th element of the one-hot vector o and

o = [0 , . . . , 1 , . . . , 0] contains a single value of 1 at the j th position,

which means the input face has the j th age label. Thus, Eq. (4) can

be rewritten as: 

L 1 ce = −o j ln p 1 
j 
= − ln p 1 

j (5)

The goal of the initial ancestor R θ1 
for label distribution learn-

ing is to minimize the cross entropy loss. The predicted label dis-

tribution p 1 will be transferred to the offspring network R θ2 
. 

3.2.2. The refinery procedure 

After the first refinement, we obtain the preliminary age-label

distribution without making strong assumptions for the form of

the distribution. Then, the preliminary age-label distribution acts

as new experience and knowledge to be transferred to the next
efinery. In the t th refinery, where t > 1, the predicted age-label

istribution p t = { p t 
1 
, . . . , p t 

i 
, . . . } of R θt 

is calculated by 

p t i = 

exp 

(
z t 

i 
/τ

)
∑ 

j exp 

(
z t 

j 
/τ

) (6)

We transfer the age-label distribution from the ( t − 1 )th refin-

ry to the current refinery by: 

 

t 
l dl _ ce 

= −∑ 

i 

p t−1 
i 

ln p t 
i (7)

here p t−1 is the predicted age distribution of R θt−1 
, which can

rovide more useful information as a soft target. 

It is worth noting that there is a discrepancy between the true-

abel distribution and the predicted-label distribution p t−1 of R θt−1 
.

sing only Eq. (7) in the refinery may achieve inferior perfor-

ance. Consequently, we employ an additional cross-entropy term

 

t 
ce to rectify this discrepancy. 

 

t 
ce = −∑ 

i 

o i ln p t 
i (8)

The final supervision of the refinery involves both the predicted

ge-label distributions and the target age labels, which can be for-

ulated as: 

 

t 
ldl 

= αL t 
l dl _ ce 

+ ( 1 − α) L t ce (9)

here α is the trade-off parameter to balance the importance of

he two terms. 

.3. Slack regression refinery 

The age inference process of label distribution learning is often

egarded as a classification task in which the correlations among

he age classes are not considered. However, the age labels are an

rdered set. Accordingly, we introduce a novel regression method,
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Algorithm 1 Training algorithm of R θt 
, t > 1 . 

Input: The training set S = { ( x, o, y, l ) } ,the number of iterations 

iter,the temperature parameter τ ,the maximal age max ,the 

minimal age min ,the trade-off parameter α, λt ,the predicted 

age-label distribution p t−1 (t > 1) , andthe regressed age value 

s t−1 (t > 1) . 

Output: 

The predicted age-label distribution p t ,the classified age value 

c t andthe regressed age value s t . 

1: Initialize R θt 
by a pre-trained model on IMDB-WIKI. 

2: i ← 0 

3: while i < iter do 

4: Sample the training data 

5: Model forward propagation 

6: Calculate L t 
kl 

, L t ce and L t 
slack _ � 1 

7: L t 
ldl 

← αL t 
l dl _ ce 

+ ( 1 − α) L t ce 

8: L t ← L t 
ldl 

+ λt L 
t 
slack _ � 1 

9: Optimize R θt 
by minimizing L t 

10: i ← i + 1 

11: end while 

Table 1 

Comparisons of different network architectures on the MORPH Al- 

bum2 dataset. A smaller MAE is better. 

Method Pre-training MORPH # of Parameters 

GoogLeNet V1 IMDB-WIKI 2.311 5.7M 

MobileNet V2 IMDB-WIKI 2.579 2.4M 

ShuffleNet V2 IMDB-WIKI 2.653 1.4M 

ResNet-18 IMDB-WIKI 2.220 11.2M 

ResNet-10 IMDB-WIKI 2.321 4.9M 

ResNet-18-Tiny IMDB-WIKI 2.304 2.8M 

ResNet-10-Tiny IMDB-WIKI 2.446 1.2M 
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alled slack regression refinery, to transfer the ordered and age in-

ormation of the previous ancestor to the current offspring. Specif-

cally, a slack term is introduced into the slack regression refin-

ry network, which converts age-label regression to age-interval

egression. 

The initial ancestor LRN R θ1 
takes the given instance x as the

nput and produces an approximately regressed age. Then, the ab-

olute difference between the regressed age and the ground-truth

ge is treated as the knowledge to be inherited by the offspring

RN R θ2 
. Similarly, after each refinement, the offspring LRN R θt 

will

e treated as the new ancestor for the next LRN R θt+1 
. 

.3.1. The initial ancestor 

For regression, R θ1 
learns the mapping from the given instance

 to a real value s 1 ∈ R : 

 

1 = 

(
W 

1 
reg 

)T 
f 1 + b 1 reg 

(10) 

here W 

1 
reg and b 1 reg are the weights and biases of the fully con-

ected layer, respectively. 

We train the initial ancestor R θ1 
with � 1 loss to minimize the

istance between the regressed age s 1 and the ground-truth age y .

 

1 
� 1 

= s 1 − y (11) 

.3.2. The refinery procedure 

We observe that Eq. (11) is essentially a standard regression

rocess, and the target age y is a discrete value. To deliver the or-

ered and primary age information of the ancestor LRN R θt−1 
to

he offspring LRN R θt 
, we introduce a slack term �s t−1 into the

egression model of R θt 
, which is defined as follows: 

s t−1 = | s t−1 − y | , t > 1 (12) 

We assume that R θt 
is superior to R θt−1 

, which means the re-

ression error of R θt 
should not exceed �s t−1 : 

�s t−1 ≤ s t − y ≤ �s t−1 (13) 

Eq. (13) can be rewritten as: 

 s t − y | − �s t−1 ≤ 0 (14) 

Above all, we define a slack � 1 loss as follows: 

 

t 
slack _ � 1 

= max 
(
0 , | s t − y | − �s t−1 

)
(15) 

q. (15) transforms the regressed age s t of R θt 
into an age inter-

al 
[
y − �s t−1 , y + �s t−1 

]
, but not strictly equal to an age label y .

rom this perspective, by introducing the slack term �s t−1 into the

egression model, we convert the age-label regression model to an

ge-interval regression model for age estimation. 

At each refinement, we minimize the slack loss � 1 and find that

s t−1 can gradually decrease. 

.4. Training framework 

The training procedure of the LRN contains both a label distri-

ution refinery and a slack regression refinery. It can be divided

nto two parts: the initial ancestor and the refinery procedure. 

The total supervised loss for the initial ancestor R θ1 
is 

 

1 = L 1 ce + λ1 L 
1 
� 1 

(16) 

here λ1 is the trade-off parameter to balance the importance of

he initial label distribution learning and the � 1 regression model. 

The total supervised loss for the refinery procedure is 

 

t = L t 
ldl 

+ λt L 
t 
slack _ � 1 

(17) 

here t > 1 and λt is the trade-off parameter to balance the im-

ortance of label distribution refinery and the slack � 1 regression

odel. The whole training process of the following offspring net-

ork R θt 
( t > 1) is described in Algorithm 1 . 
.5. Age estimation in the testing phase 

In the testing phase, for a given instance, we use ˆ y ldl to denote

he estimated age of the label distribution refinery, which can be

ritten as 

ˆ 
 ldl = 

∑ 

i 

p t 
i 
l i (18) 

The estimated age ˆ y reg of the slack regression refinery can be

ormulated as 

ˆ 
 reg = ( l k − l 1 ) · s t + l 1 (19) 

here l 1 and l k are the minimal and maximal ages, respectively, in

he training set. 

Then, the final estimated age ˆ y is the average of the above two

esults. 

ˆ 
 = 

ˆ y ldl + ̂ y reg 

2 
(20) 

.6. Network architecture 

We compare several widely used network architectures, includ-

ng GoogLeNet V1 [46] , MobileNet V2 [47] , ShuffleNet V2 [48] ,

esNet-10, and ResNet-18 [36] , for backbone selection of the pro-

osed method. In particular, two fully connected layers are in-

erted for the label distribution refinery and slack regression re-

nery. Table 1 shows the comparison results of the MAE on the

ORPH Album2 dataset. Obviously, ResNet-18 achieves the best re-

ult, and ResNet-10 achieves a similar result as GoogLeNet. How-

ver, ResNet-10 has fewer parameters than GoogLeNet. Consider-

ng the size and efficiency of ResNet-10 and ResNet-18, we fur-

her halve the number of feature channels and obtain two tiny

ariations, called ResNet-10-Tiny and ResNet-18-Tiny, respectively.
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Table 2 

Network architectures in our method. 

Layer name Output size ResNet-10 ResNet-18 ResNet-10-Tiny ResNet-18-Tiny 

Conv1 112 × 112 7 × 7, 64, Stride 2 7 × 7, 32, Stride 2 

Conv2 _ x 56 × 56 3 × 3 max pooling, Stride 2 [
3 × 3 , 64 

3 × 3 , 64 

]
× 1 

[
3 × 3 , 64 

3 × 3 , 64 

]
× 2 

[
3 × 3 , 32 

3 × 3 , 32 

]
× 1 

[
3 × 3 , 32 

3 × 3 , 32 

]
× 2 

Conv3 _ x 28 × 28 

[
3 × 3 , 128 

3 × 3 , 128 

]
× 1 

[
3 × 3 , 128 

3 × 3 , 128 

]
× 2 

[
3 × 3 , 64 

3 × 3 , 64 

]
× 1 

[
3 × 3 , 64 

3 × 3 , 64 

]
× 2 

Conv4 _ x 14 × 14 

[
3 × 3 , 256 

3 × 3 , 256 

]
× 1 

[
3 × 3 , 256 

3 × 3 , 256 

]
× 2 

[
3 × 3 , 128 

3 × 3 , 128 

]
× 1 

[
3 × 3 , 128 

3 × 3 , 128 

]
× 2 

Conv5 _ x 7 × 7 

[
3 × 3 , 512 

3 × 3 , 512 

]
× 1 

[
3 × 3 , 512 

3 × 3 , 512 

]
× 2 

[
3 × 3 , 256 

3 × 3 , 256 

]
× 1 

[
3 × 3 , 256 

3 × 3 , 256 

]
× 2 

1 × 1 Average pooling, num _ age-d fc, 1-d fc 

# of Parameters 4.9M 11.2M 1.2M 2.8M 
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The result of ResNet-10-Tiny is 2.446, which is better than 2.653

achieved by ShuffleNet V2 and 2.579 achieved by MobileNet V2.

However, ResNet-10-Tiny has 1.2M parameters, less than that of

ShuffleNet V2 (1.4M) and MobileNet V2 (2.4M). Therefore, we fi-

nally choose ResNet-10 and ResNet-18 and their tiny versions as

the backbone networks of the proposed method. The architectures

of ResNet-10, ResNet-18, ResNet-10-Tiny and ResNet-18-Tiny in our

experiments are listed in Table 2 . 

4. Experiments 

4.1. Dataset and protocol 

We evaluate the proposed LRN on both the apparent-age and

real-age datasets. 

IMDB-WIKI [9] is the largest publicly available dataset of facial

images with age and gender labels. It consists of 523,051 facial im-

ages, 460,723 images from IMDB and 62,328 from Wikipedia. The

ages in the IMDB-WIKI dataset range from 0 to 100 years old. Al-

though it is the largest dataset for age estimation, IMDB-WIKI is

still not suitable for evaluation due to existing noise. Thus, like

most previous works [4,49,50] , we utilize IMDB-WIKI only for pre-

training. 

ChaLearn15 [51] is the first dataset for apparent-age estimation,

which contains 4691 colour images: 2,476 images for training, 1136

images for validation and the 1087 images for testing. ChaLearn15

comes from the first competition track of ChaLearn LAP 2015. Each

image is labelled using an online voting platform. We follow the

protocol in [52] to train on the training set and evaluate on the

validation set. 

MORPH Album2 [53] is the most popular benchmark for real-

age estimation, which contains 55,134 colour images of 13,617 sub-

jects with age and gender information. The ages in MORPH Al-

bum2 ranges from 16 to 77 years old. It has an average of four

images of each subject. The traditional 80-20 split protocol is used

for MORPH Album2. 

MegaAge-Asian [49] is a newly released large-scale facial age

dataset. Different from most facial age datasets that only contain

faces of Westerners, there are only faces of Asians in the MegaAge-

sian dat aset. It consist s of 40,0 0 0 images encompassing ages from

0 to 70 years old. Following [49] , we reserve 3945 images for

testing. 

4.2. Evaluation metric 

We evaluate the performance of the proposed LRN with the

mean absolute error, ε-error and cumulative accuracy. 

The mean absolute error (MAE) is widely used to evaluate the

performance of age estimation. It is defined as the average dis-
ances between the ground-truth and predicted ages, which can be

ritten as: 

AE = 

1 
N 

N ∑ 

i =1 

| ̂  y i − y i | (21)

here ˆ y i and y i denote the predicted age and the ground-truth age,

espectively, of the i th testing instance. 

ε-error is the evaluation metric for apparent-age estimation,

hich can be formulated as: 

− error = 

1 
N 

N ∑ 

i =1 

(
1 − exp (− ( ̂ x i −μi ) 

2 

2 σ 2 
i 

) 

)
(22)

here ˆ x i , μi and σ i denote the predicted age, mean age and stan-

ard deviation, respectively, of the i th testing instance. 

The cumulative accuracy (CA) is employed as the evaluation

etric for MegaAge-Asian, which can be calculated as: 

A ( n ) = 

K n 
K 

× 100% 

(23)

here K n is the number of test images whose absolute estimated

rror is less than n . We report CA(3), CA(5), CA(7) in our experi-

ents, following [4,49] . 

.3. Implementation details 

.3.1. Pre-processing 

We utilize a multi-task cascaded CNN [54] to detect and align

he face images. Then, all the images are resized to 224 × 224

s the inputs. In addition, data augmentation is important for deep

eural networks in age estimation. We augment the training data

y (a) random resized cropping to change the aspect ratio from

.8 to 1.25 and the scale from 0.8 to 1.0; (b) random horizontal

ipping with the probability of 0.5. 

.3.2. Training details 

All the network architectures used in the LRN were pre-trained

n the IMDB-WIKI dataset by Eq. (16) . We employ an SGD opti-

izer with the initial learning rate, the momentum and the weight

ecay set to 0.01, 0.9 and 1e-4, respectively. The learning rate is

ecreased by a factor of 10 after every 40 epochs. Each model is

rained for a total of 160 epochs with a mini-batch size of 128.

hen, the pre-trained models on IMDB-WIKI are used as initializa-

ions on the target age dataset: ChaLearn15, MORPH Album2 and

egaAge-Asian. All the networks are optimized by the SGD op-

imizer. The initial learning rate, the momentum and the weight

ecay are set to 0.001, 0.9 and 1e-4, respectively. If not specified,

e employ λ1 = λt = 4 , α = 0 . 5 and τ = 2 in our experiments. The

earning rate is decreased by a factor of 10 after every 40 epochs.

ach model is trained for a total of 160 epochs with a mini-batch

ize of 128. 
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Table 3 

Comparisons with the state-of-the-art methods on the MORPH Album2 dataset. A 

smaller MAE is better. 

Method Pre-training Morph Year 

MAE 

OR-CNN [3] – 3.34 2016 

Ranking [10] Audience 2.96 2017 

Posterior [49] IMDB-WIKI 2.52 2017 

DRFs [7] – 2.17 2017 

DEX [52] IMDB-WIKI ∗ 2.68 2018 

SSR-Net [4] IMDB-WIKI 2.52 2018 

M-V Loss [50] IMDB-WIKI 2.16 2018 

TinyAgeNet [12] MS-Celeb-1M 

∗ 2.291 2018 

ThinAgeNet [12] MS-Celeb-1M 

∗ 1.969 2018 

LRN (ResNet-10-Tiny) IMDB-WIKI 2.229 

LRN (ResNet-10) IMDB-WIKI 2.134 

LRN (ResNet-18-Tiny) IMDB-WIKI 2.069 

LRN (ResNet-18) IMDB-WIKI 1.905 

∗ Using partial data from the dataset. 

Table 4 

Comparisons with the state-of-the-art methods on the ChaLearn15 dataset. A 

smaller MAE and ε-error are better. 

Method Pre-training ChaLearn15 # of Params Year 

MAE ε-error 

ARN [8] IMDB-WIKI 3.153 – 134.6M 2017 

DEX [52] – 5.369 0.456 134.6M 2018 

DEX [52] IMDB-WIKI ∗ 3.252 0.282 134.6M 2018 

TinyAgeNet [12] MS-Celeb-1M 

∗ 3.427 0.301 0.9M 2018 

ThinAgeNet [12] MS-Celeb-1M 

∗ 3.135 0.272 3.7M 2018 

LRN (ResNet-10-Tiny) IMDB-WIKI 3.052 0.274 1.2M 

∗ Using partial data from the dataset. 
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Table 5 

Comparisons with state-of-the-art methods on the MegaAge-Asian dataset. The unit 

of CA(n) is %. A larger CA(n) is better. 

Method Pre-training MegaAge-Asian Year 

CA(3) CA(5) CA(7) 

Posterior [49] IMDB-WIKI 62.08 80.43 90.42 2017 

Posterior [49] MS-Celeb-1M 64.23 82.15 90.80 2017 

MobileNet [4] IMDB-WIKI 44.0 60.6 – 2018 

DenseNet [4] IMDB-WIKI 51.7 69.4 – 2018 

SSR-Net [4] IMDB-WIKI 54.9 74.1 – 2018 

LRN (ResNet-10-Tiny) IMDB-WIKI 63.60 82.36 91.80 

LRN (ResNet-10) IMDB-WIKI 62.86 81.47 91.34 

LRN (ResNet-18-Tiny) IMDB-WIKI 64.45 82.95 91.98 

LRN (ResNet-18) IMDB-WIKI 63.73 82.88 91.64 

Table 6 

Age estimation results of Face ++ [55] and the 

proposed LRN on the MORPH Album2 dataset. 

A smaller MAE is better. 

Method MAE 

Face ++ [55] 6.227 

LRN 1.905 

Table 7 

Comparisons with using only label distribution learning and regression on MORPH 

Album2 and MegaAge-Asian. A smaller MAE is better, while a larger CA(n) is better. 

We employ ResNet-18 as the backbone. The unit of CA(n) is %. 

Method MORPH MegaAge-Asian 

MAE CA(3) CA(5) CA(7) 

Reg 2.578 58.22 79.01 89.03 

Reg (LDL + Reg) 2.234 59.04 79.26 89.74 

LDL 2.323 59.14 78.70 89.26 

LDL (LDL + Reg) 2.245 60.49 79.95 89.87 

LDL + Reg 2.298 59.52 78.90 90.07 

LDL + Reg (LDL + Reg) ( ̂ y ) 2.220 60.83 80.11 90.52 
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.4. Comparisons with state-of-the-Art methods 

We compare the proposed LRN with previous state-of-the-art

ethods on the MORPH Album2, ChaLearn, and MegaAge-Asian

atasets. The proposed LRN performs the best among all the state-

f-the-art methods. 

Table 3 shows the MAEs of the individual methods on the

ORPH Album2 dataset. Benefiting from the adaptive learning

f the label distribution and the concurrent refinery mechanism,

ur LRN, based on ResNet-18, achieves an MAE of 1.905 on the

ORPH Album2 dataset and outperforms the previous state-of-

he-art method from ThinAgeNet [12] . 

In addition to real-age estimation, apparent-age estimation is

lso important. We conduct experiments on ChaLearn15 to vali-

ate the performance of our method for apparent-age estimation.

ince there are only 2476 images for training in the ChaLearn15

ataset, a large network may lead to overfitting. Therefore, we

hose ResNet-10-Tiny with 1.2M parameters as the backbone for

he evaluations. Table 4 shows the comparison results in terms of

he MAE and ε-error. The proposed method creates a new state-of-

he-art MAE of 3.052. The ε-error of 0.274 is also close to the best-

ompeting result of 0.272 (ThinAgeNet). Note the LRN (ResNet-10-

iny) has 1.2M parameters, much less than the 3.7M parameters of

hinAgeNet. 

In addition, we evaluate the performance of the LRN on the

egaAge-Asian dataset, which only contains images of Asians.

able 5 reports the comparison results of CA(3), CA(5) and CA(7).

ur LRN (ResNet-18-Tiny) achieves 64.23%, 82.15% and 90.80%,

hich are the new state-of-the-art. Our LRN achieves 2.37%, 2.52%

nd 1.56% improvements over the previous best method, Posterior

49] , when both are pre-trained on the IMDB-WIKI dataset. 
.5. Comparisons with commercial systems 

We apply the online face analysis tool Face ++ [55] to esti-

ate the ages in the testing set from the MORPH Album2 dataset.

able 6 shows the age estimation results of Face ++ and the pro-

osed LRN. We observe that there is a large gap between the es-

imated results of Face ++ and our LRN. Since the training details

f Face ++ online tool are hidden, a possible reason is that Face ++
as not been trained on MORPH Album2. 

.6. Ablation study 

.6.1. The superiority of the concurrent training mechanism 

In this subsection, we prove the effectiveness of the concurrent

raining mechanism. Table 7 shows the comparison results. The

rst and third rows are the results of using only label distribu-

ion learning (LDL) and regression (Reg), respectively. The second

nd fourth rows are the results of the LDL and Reg methods with

ointly training (LDL + Reg), respectively. The fifth row shows the

esults of fusing the individual models trained only for LDL and

eg by Eq. (20) . The last row presents the result of fusing the two

odels trained with the concurrent training mechanism (LDL + Reg)

y Eq. (20) . 

Obviously, the proposed concurrent training mechanism

LDL + Reg) achieves superior performance than the other meth-

ds, which are trained only with LDL and Reg separately. For

xample, compared with that of Reg, the MAE of LDL + Reg ŷ

mproves by 0.378 on MORPH Album2. This finding indicates that

he concurrent training mechanism can significantly improve the
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Fig. 3. The refinement of the age-label distributions with different temperature parameters τ , where t denotes the t th refinement. For the given individual, the first, second 

and third rows are the predicted age-label distributions of R θ1 
, R θ2 

and R θ3 
, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

The influences of the refinery mechanism. The first refinery step ( t = 1 ) is the initial 

ancestor in the LRN. The unit of CA(n) is %. A smaller MAE is better, while a larger 

CA(n) is better. 

Backbone Morph MegaAge-Asian 

MAE CA(3) CA(5) CA(7) 

LRN 

(ResNet-10-Tiny) 

t = 1 2.446 60.52 80.13 90.64 

t = 2 2.300 62.01 81.90 91.64 

t = 3 2.241 63.14 82.31 91.84 

t = 4 2.229 63.60 82.36 91.80 

LRN (ResNet-10) t = 1 2.321 59.57 79.44 89.39 

t = 2 2.207 61.91 81.18 91.16 

t = 3 2.150 62.86 81.47 91.34 

t = 4 2.134 62.78 81.77 91.00 

LRN 

(ResNet018-Tiny) 

t = 1 2.304 61.88 81.31 91.34 

t = 2 2.136 63.57 82.00 91.46 

t = 3 2.069 64.52 82.03 91.70 

t = 4 2.074 64.45 82.95 91.98 

LRN (ResNet-18) t = 1 2.220 60.83 80.11 90.52 

t = 2 1.996 62.42 82.75 91.59 

t = 3 1.905 63.31 83.11 92.28 

t = 4 1.919 63.73 82.88 91.64 

9  

i  

a  
performance of the age estimation task; therefore, we choose ˆ y as

the age estimation results in the following experiments. 

4.6.2. The superiority of the refinery mechanism 

In this subsection, we qualitatively and quantitatively demon-

strate the superiority of the proposed refinery mechanism. Fig. 3

depicts the refinement of the age-label distributions. As shown in

the second column of Fig. 3 (b), for the given individual who is 45

years old, the first predicted distribution can be regarded as am

approximately bimodal distribution with two peaks at 41 and 51,

which is ambiguous for age estimation. After one refinement, the

predicted distribution is refined from a bimodal distribution to a

unimodal distribution with a single peak at 48. After two refine-

ments, the peak of the unimodal distribution moves from 48 to

45, which is the true age of the input individual. This movement

indicates the effectiveness of the additional cross-entropy term in

Eq. (9) , which aims to rectify the discrepancy between the real-

label distribution and the predicted-label distribution. 

In addition, we show the quantitative experimental results of

the refinery mechanism on MORPH Album2 and MegaAge-Asian in

Table 8 . We observe that the performance of all the network archi-

tectures increases through refinement. For example, after 2 time

evolutions (from t = 1 to t = 3 ), the CA(7) for the LRN (ResNet-

10-Tiny), LRN (ResNet-10), LRN (ResNet-18-Tiny), and LRN (ResNet-

18) on MegaAge-Asian improved from 90.64%, 89.39%, 91.34% and
0.52% to 91.84%, 91.34%, 91.70% and 92.28%, respectively. This find-

ng demonstrates the superiority of the proposed refinery mech-

nism. Specifically, there is a significant improvement from the



P. Li, Y. Hu and X. Wu et al. / Pattern Recognition 100 (2020) 107178 9 

Fig. 4. Visualizing the class-specific activation maps of the LRN (ResNet-18) with the class activation mapping (CAM) approach [56] on MegaAge-Asian images, where t 

denotes the t th refinement. For each refinement, the first row is for infants, the second row is for adults, the third row is for older people and the fourth row is for partially 

occluded facial images. 

fi  

m  

(  

r  

t

4

 

p  

o

4

 

t  

t  

c  

o  

h  

a  

t  

p  

w

 

b  

r  

p  

c

4

 

c  

Table 9 

The influences of the hyper-parameters λ, α and τ . A smaller MAE is better. 

Hyper-param Morph Hyper-param Morph Hyper-param Morph 

τ α λ MAE τ α λ MAE τ α λ MAE 

1 0.5 4 2.096 2 0.25 4 1.946 2 0.5 1 1.965 

2 0.5 4 1.905 2 0.50 4 1.905 2 0.5 2 1.962 

3 0.5 4 1.941 2 0.75 4 1.921 2 0.5 3 1.922 

4 0.5 4 1.970 2 1.00 4 1.952 2 0.5 4 1.905 

– – – – – – – – 2 0.5 5 1.933 

b  

s  

t  

l  

(

4

 

o  

o  

1  

t

4

 

f  

m  

p  

a  

(  
rst refinement ( t = 1 ) to the second refinement ( t = 2 ), which is

ainly because of the additional employment of Kullback-Leibler

KL) divergence and the slack term. We also observe that the best

esults are achieved in the 3rd or 4th refinement, indicating that

he boosting is saturated in the refinery procedure. 

.7. The sensitivity and analysis of the hyper-parameters 

In this section, we explore the influences of three hyper-

arameters τ , α and λ on the LRN. All the experiments are trained

n MORPH Album2 with the ResNet-18 model. 

.7.1. Influence of the temperature parameter τ
The temperature parameter τ plays an important role in the es-

imation of the age distribution. Fig. 3 provides a schematic illus-

ration of the influence of τ . In Fig. 3 (a), from left to right, each

olumn presents the age-label distributions when τ = 1 , 2 , 3 , 4 . We

bserve that τ = 2 works better in our LRN than other lower or

igher temperatures. Specifically, when τ = 1 , the negative logits

re mostly ignored, even though they may convey useful informa-

ion about the knowledge from the ancestor LRN. A τ = 3 or 4 sup-

resses the probability of the peak in the age-label distribution,

hich contributes to misclassification during optimization. 

In addition, we quantitatively compare the MAEs on MORPH Al-

um2 for different τ values. Specifically, we fix α to 0.5, λ to 2 and

eport the results for τ values ranging from 1 to 4 ( Table 9 ). Ap-

arently, when τ = 2 , we obtain the best MAE (1.905). Thus, we

hose to use τ = 2 in our experiments. 

.7.2. Influence of the hyper-parameter α
We use the hyper-parameter α to balance the importance of the

ross-entropy and Kullback-Leibler (KL) divergence losses in the la-
el distribution refinery. We fix τ to 2, λ to 2 and report the re-

ults for α from 0.25 to 1.00 ( Table 9 ). When α = 0 . 50 , we ob-

ain the best result, which indicates that both the cross-entropy

oss and Kullback-Leibler divergence loss are equally important

 α = 0 . 50 ) in our method. 

.7.3. Influence of the hyper-parameter λ
The hyper-parameter λ is employed to balance the importance

f the label distribution refinery and slack regression refinery in

ur LRN. We fix τ to 2, α to 0.5 and report the results for λ from

 to 5 in Table 9 . We can see that when λ = 4 , the LRN performs

he best. 

.8. Visual explanations of the LRN 

To better understand how our approach learns discriminative

eatures for age estimation, the age-specific activation maps of our

odel are visualized with the alass activation mapping (CAM) ap-

roach [56] in Fig. 4 . We observe that the LRN tends to rely on

 smaller discriminative region as the refining process progresses

 t = 1 , 2 , 3 , 4 ). In addition, these maps demonstrate that the
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Fig. 5. Sample data with large pose variations in the MegaAge-Asian database. 

Table 10 

Age estimation results with small-pose and large-pose facial 

images on the MegaAge-Asian database. A larger CA(n) (in %) 

is better. 

Pose MegaAge-Asian 

CA(3) CA(5) CA(7) 

Large Pose 51.92 65.38 73.07 

Small Pose 64.61 83.19 92.23 

Table 11 

Age estimation results with different ethnicities 

and genders on the MORPH Album2 dataset. A 

smaller MAE is better. 

Ethnicity Caucasian 2.06 

African 1.88 

Gender Male 1.81 

Female 2.57 
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discriminative regions are different at different ages. For example,

for infants, the LRN pays more attention to the area between the

eyes. For adults, the discriminative regions are mainly located in

the eyes and nose areas, while for older people, the LRN mainly fo-

cuses on the distinctive textures. Specifically, for partially occluded

facial images, the LRN mostly focuses on the unobstructed facial

parts. 

4.9. The effect of pose, ethnicity and gender 

4.9.1. The effect of pose 

Since MORPH Album2 contains just frontal images, we evaluate

the impact of the pose variations on the MegaAge-Asian database,

which contains a small percentage of facial images with large pose

variations (1.3%), as shown in Fig. 5 . We report the age estima-

tion results (CA(n)) for small-pose and large-pose facial images in

Table 10 . Obviously, the age estimation results for the small-pose

faces are more accurate than those for the large-pose faces. There

may be two potential reasons: (1) the training set contains few

large-pose faces (approximately 1.3% in MegaAge-Asian), leading

to inferior estimation for large poses; (2) images with large poses

contain less facial information and more background information,

which may decrease the accuracy. 

4.9.2. The effect of ethnicity and gender 

To explore the impact of ethnicity and gender on age estima-

tion, we evaluate our LRN on MORPH Album2, which provides eth-

nicity and gender label information. For ethnicity, there are ap-

proximately 77% Africans and 19% Caucasians in MORPH Album2.

For gender, there are approximately 84% males and 16% females

in MORPH Album2. We report the age estimation results (MAE) for

different ethnicities and genders in Table 11 . The result for Africans

is more accurate than that for Caucasians, and the result for males

is more accurate than that for females. The reason may be that the
raining set has much fewer Caucasian (female) faces than African

male) faces. 

. Conclusion 

In this paper, we propose a label refinery network (LRN) for age

stimation, which contains two concurrent processes: label distri-

ution refinement and slack regression refinement. The proposed

abel distribution refinery contributes to adaptively learning and

efining the age-label distributions without making strong assump-

ions about the distribution. Benefiting from the constant refine-

ent of the learning results, the proposed LRN generates a pre-

ise label distribution. To assist label distribution refinement, we

ntroduce slack regression with a concurrent training mechanism

or better utilizing the correlations among age classes and trans-

erring the regression knowledge. The experimental results on the

orph Album2, ChaLearn15, and MegaAge-Asian datasets demon-

trate the superiority of the LRN. 

Although our method can predict the label distribution better

han the state-of-the-art methods, there is still room for improve-

ent. The accuracy will decrease sharply when dealing with cross-

omain (e.g., poses, expressions and countries) faces. For example,

ge estimation for small-pose faces is more accurate than that for

arge-pose faces. There may be two potential reasons. On the one

and, the images with large poses contain less facial information

nd more background information, leading to the drop in accu-

acy. On the other hand, current datasets for age estimation con-

ain a larger number of small-pose faces than the large-pose faces.

hus, we intend to explore domain-invariant age estimation in the

uture. 
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