

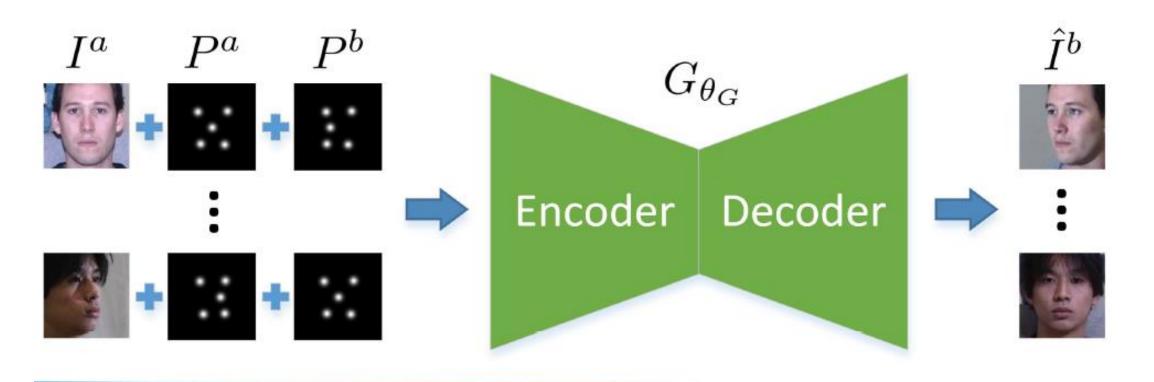
Pose-Guided Photorealistic Face Rotation

Yibo Hu^{1,2}, Xiang Wu¹, Bing Yu³, Ran He^{1,2}, Zhenan Sun^{1,2}

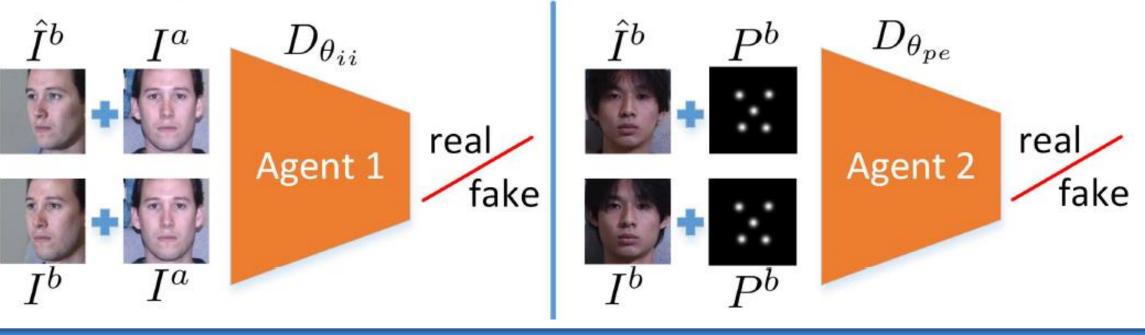
¹CRIPAC & NLPR & CEBSIT CASIA, ²University of Chinese Academy of Sciences, ³Noah's Ark Laboratory, Huawei Technologies Co., Ltd.

Background:

Face rotation provides a cheap but effective way for data augmentation and representation learning of face recognition. It aims to rotate a normalized face to arbitrary poses, where only yaw is considered.



Contributions:


- A Couple-Agent Pose-Guided Generative Adversarial Network is proposed for face rotation from a single image in 2D space.
- Landmark heatmaps are used as controllable signals in pose-guided generator.
- The couple-agent discriminator combines prior domain knowledge of pose and local structure of face to reinforce the realism of synthetic arbitrary view faces.

Framework:

Pose-Guided Generator

Couple-Agent Discriminator

Loss Functions:

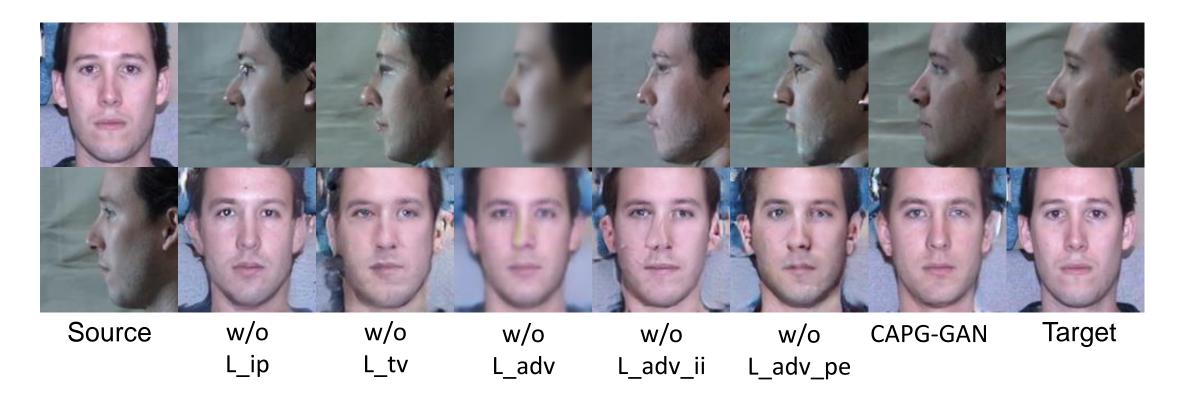
$$\min_{\theta_{G}} \max_{\theta_{ii},\theta_{pe}} L = \lambda_{1} L_{pix} + \lambda_{2} L_{adv}^{ii} + \lambda_{3} L_{adv}^{pe} + \lambda_{4} L_{ip} + \lambda_{5} L_{tv}$$

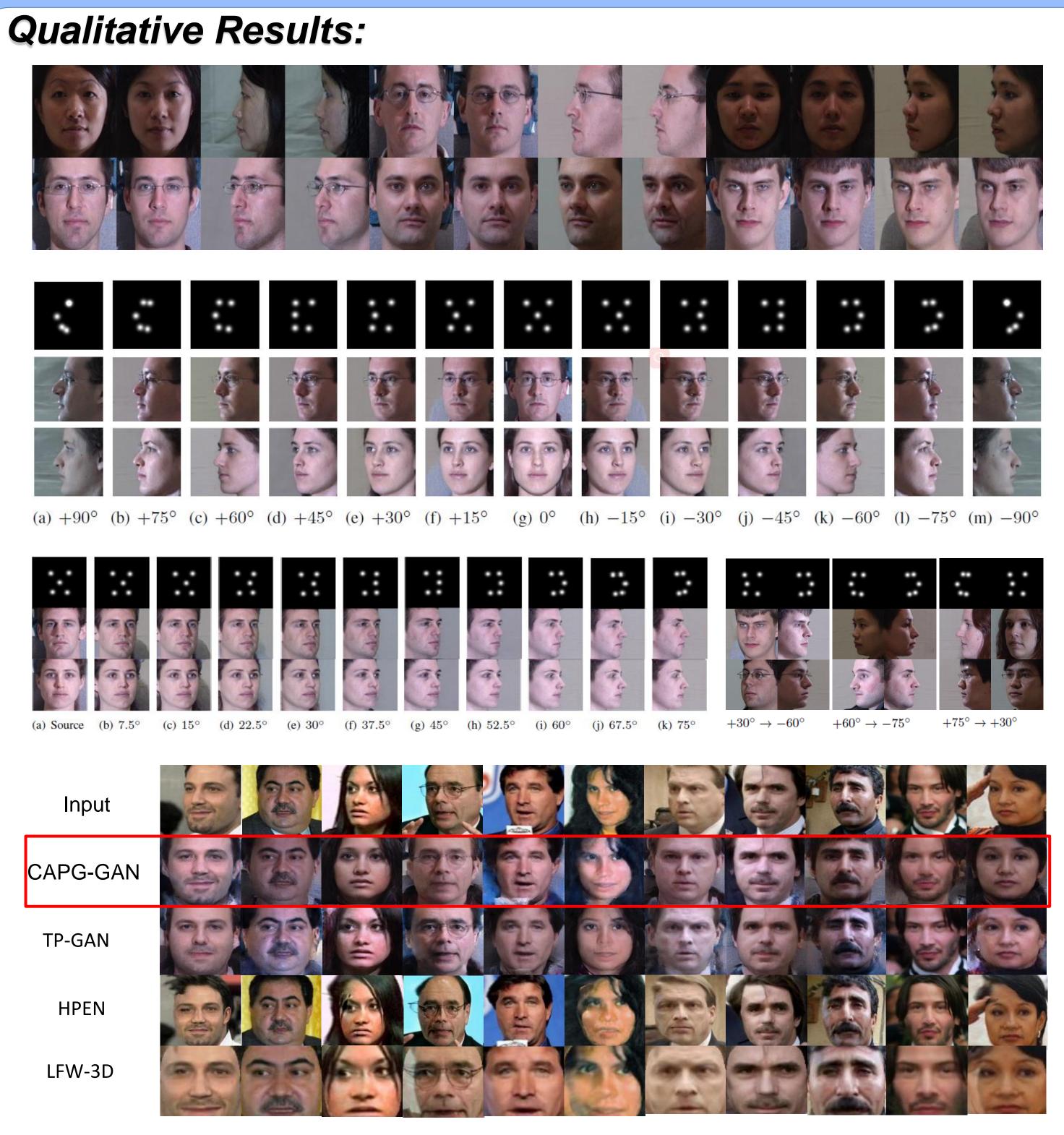
$$L_{pix} = \frac{1}{S} \sum_{s=1}^{S} \frac{1}{W_{s} H_{s} C} \sum_{w,h,c=1}^{W_{s},H_{s},C} \left| \hat{I}_{s,w,h,c}^{b} - I_{s,w,h,c}^{b} \right|$$

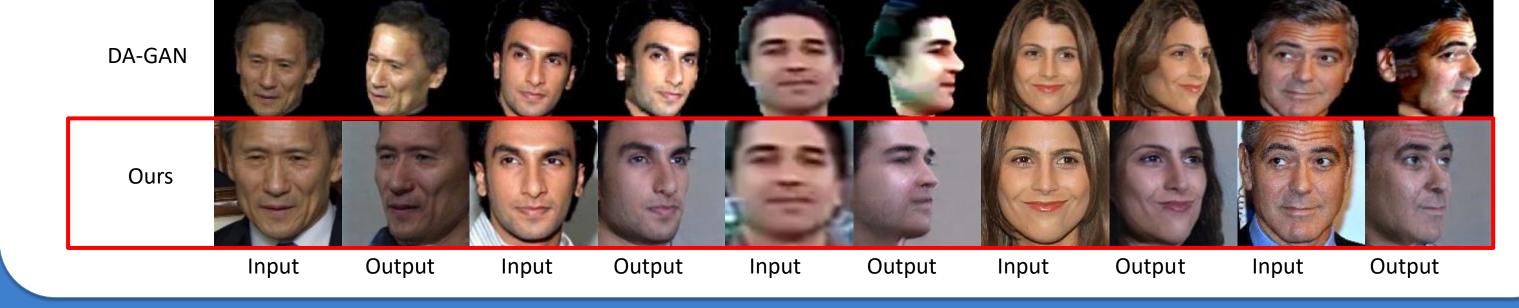
$$L_{adv}^{ii} = E_{I^{b} \sim P(I^{b})} \left[\log D_{\theta_{ii}} \left(I^{b}, I^{a} \right) \right] + E_{\hat{I}^{b} \sim P(\hat{I}^{b})} \left[\log \left(1 - D_{\theta_{ii}} \left(\hat{I}^{b}, I^{a} \right) \right) \right]$$

$$L_{adv}^{pe} = E_{I^{b} \sim P(I^{b})} \left[\log D_{\theta_{pe}} \left(I^{b}, P^{b} \right) \right] + E_{\hat{I}^{b} \sim P(\hat{I}^{b})} \left[\log \left(1 - D_{\theta_{pe}} \left(\hat{I}^{b}, P^{b} \right) \right) \right]$$

$$L_{ip} = \left\| D_{ip}^{p} (\hat{I}^{b}) - D_{ip}^{p} (I^{b}) \right\|_{F}^{2} + \left\| D_{ip}^{fc} (\hat{I}^{b}) - D_{ip}^{fc} (I^{b}) \right\|_{2}^{2}$$


$$L_{tv} = \sum_{c=1}^{C} \sum_{w,h=1}^{W,H} \left| \hat{I}_{w+1,h,c}^{b} - \hat{I}_{w,h,c}^{b} \right| + \left| \hat{I}_{w,h+1,c}^{b} - \hat{I}_{w,h,c}^{b} \right|$$


Quantitive Results:


Method	±90°	±75°	±60°	$\pm 45^{\circ}$	±30°	±15°
FIP+LDA[40]	-	-	45.9	64.1	80.7	90.7
MVP+LDA[41]	-	-	60.1	72.9	83.7	92.8
CPF[34]	-	-	61.9	79.9	88.5	95.0
DR-GAN[28]	-	-	83.2	86.2	90.1	94.0
FF-GAN[35]	61.2	77.2	85.2	89.7	92.5	94.6
TP-GAN[14]	64.64	77.43	87.72	95.38	98.06	98.68
Light CNN[29]	5.51	24.18	62.09	92.13	97.38	98.59
CAPG-GAN	66.05	83.05	90.63	97.33	99.56	99.82

Ablation Study:

Method	±90°	±75°	±60°	$\pm 45^{\circ}$	±30°	±15°
w/o L_{ip}	40.77	46.13	53.25	64.74	76.16	86.12
w/o L_{tv}	61.33	78.98	87.68	95.58	99.03	99.74
w/o L_{adv}	46.83	56.90	67.68	85.68	96.26	99.50
w/o L^{ii}_{adv}	54.68	66.09	75.90	89.38	97.79	99.73
w/o L_{adv}^{ip}	57.78	71.17	82.05	92.50	97.57	99.63
CAPG-GAN	66.05	83.05	90.63	97.33	99.56	99.82

