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Abstract

Face rotation provides an effective and cheap way for da-

ta augmentation and representation learning of face recog-

nition. It is a challenging generative learning problem due

to the large pose discrepancy between two face images.

This work focuses on flexible face rotation of arbitrary head

poses, including extreme profile views. We propose a nov-

el Couple-Agent Pose-Guided Generative Adversarial Net-

work (CAPG-GAN) to generate both neutral and profile

head pose face images. The head pose information is encod-

ed by facial landmark heatmaps. It not only forms a mask

image to guide the generator in learning process but also

provides a flexible controllable condition during inference.

A couple-agent discriminator is introduced to reinforce on

the realism of synthetic arbitrary view faces. Besides the

generator and conditional adversarial loss, CAPG-GAN

further employs identity preserving loss and total varia-

tion regularization to preserve identity information and re-

fine local textures respectively. Quantitative and qualitative

experimental results on the Multi-PIE and LFW databas-

es consistently show the superiority of our face rotation

method over the state-of-the-art.

1. Introduction

Benefiting from the convolutional neural networks

trained on large-scale face databases [2, 10], the perfor-

mance of face recognition systems has been significant-

ly improved in recent years. However, pose variations still

pose a great challenge to face recognition in real-world s-

cenarios. The existing methods that address this pose prob-

lem can be generally categorized into two classes. The first

one aims to obtain pose-invariant embeddings [2, 22, 28].

The other aims to normalize face images [14, 35] to frontal

views, which can be directly used by general face recogni-
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Figure 1. The framework of CAPG-GAN. The generator incorpo-

rates pose information by landmark heatmaps in the learning pro-

cess. The couple-agent discriminator distinguishes generated pairs

from ground-truth pairs for photorealistic synthesization.

tion methods without retraining the recognition models.

For the first class, metric learning [25] is a common way

to achieve pose-invariant embeddings. Moreover, multi-

view [19, 30] or multiple pose-specific [21] methods are

also used to obtain pose invariance. However, due to the

imbalanced distributions that characterize a long tail dis-

tribution of large pose faces, it is often difficult to achieve

ideal pose-invariance across large pose variations.

The second class is often known as face rotation, which

resorts to computer graphics or deep learning to rotate pro-

file faces to frontal views. Recently, deep learning based

methods have shown impressive capability on face rotation

[17, 27, 39]. Early efforts [34] adopt the mean square loss

to learn a deep regression model from paired training da-

ta. Later on, multiple methods have been proposed with

novel network architecture [33, 40, 41] or learning objec-

tives [14, 28, 35]. As a representative method, TP-GAN [14]

adopts a two-pathway architecture along with sophisticated

loss functions to learn photorealistic frontal view synthe-
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sis. However, we argue that TP-GAN has two limitations.

Firstly, it employs a complex architecture to preserve glob-

al and local texture information. It contains a global net-

work and four local patch networks whose training and in-

ference are very time-consuming. Secondly, its architecture

and loss designment are specific for face frontalization and

are not applicable for arbitrary pose synthesis. In real world

scenarios, arbitrary pose synthesis is more appealing since

it has more potential applications, such as face edition and

data-augmentation for face representation learning.

To address the above issues, this paper proposes a

novel Couple-Agent Pose-Guided Generative Adversarial

Network (CAPG-GAN) for fast face rotation of arbitrary

poses. Specially, we introduce landmark heatmaps of both

the input and target faces to the generator network to in-

corporate pose information in the learning process. Land-

mark heatmaps of the target face provide guidance for ar-

bitrary pose synthesis, while that of the input face serves to

capture the local-aware information as the local pathway in

TP-GAN. By replacing the local pathway with one more

input (landmark heatmaps), training and inference speed

can be substantially accelerated. In addition, we propose a

couple-agent discriminator to harness target pose informa-

tion. The couple agents reinforce on discriminating the real-

ism of synthetic arbitrary view faces from the pose-guided

generator. Moreover, an identity preserving constraint is im-

plemented by Light CNN [29]. Under these configurations,

the pose-guided generator needs to play against the couple-

agent discriminator and is reinforced by an identity preserv-

ing network to synthesize arbitrary pose faces that are useful

for face recognition.

To summarize, the main contributions are as follows:

• A Couple-Agent Pose-Guided Generative Adversarial

Network (CAPG-GAN) is proposed for face rotation

from a single image in 2D space, which can synthesize

arbitrary view images. It can not only frontalize a face

for face recognition, but also rotate faces to an arbitrary

pose.

• Landmark heatmaps are newly used as a controllable

signal in pose-guided generator to synthesize face im-

ages. Compared to the previous methods directly based

on pose degree or 3D information, the heatmap pro-

vides a flexible and efficient way for both learning and

inference.

• The proposed couple-agent discriminator efficiently

combines prior domain knowledge of pose and local

structure of face to reinforce the realism of synthetic

arbitrary view faces.

• Our CAPG-GAN demonstrates the possibility to syn-

thesize photorealistic and identity-preserving faces

with arbitrary poses and achieves state-of-the-art face

recognition performance under large pose variations.

The rest of this paper is organized as follows. We briefly

review some related works in Section 2. In Section 3, we

present the details of our Couple-Agent Pose-Guided Gen-

erative Adversarial Network (CAPG-GAN). The experi-

mental results and algorithmic analyses are shown in Sec-

tion 4. Finally, we conclude the paper in Section 5.

2. Related Work

2.1. Generative Adversarial Network

Introduced by Goodfellow et al. [8], Generative Adver-

sarial Network (GAN) plays a min-max game to improve

both discriminator and generator. With the constraints of the

min-max game, GAN can encourage the generated images

to be close to the true image manifolds. Recently, deep con-

volutional generative adversarial network (DCGAN) [23]

has demonstrated the superior performance of image gen-

eration. Info-GAN [3] applies information regularization to

optimization. Furthermore, Wasserstein GAN [1] improves

the learning stability of GAN and provides solutions of

debugging and hyperparameter searching for GAN. These

successful theoretical analyses of GAN show the effective-

ness and possibility of photorealistic face image generation

and synthesis.

2.2. Face Frontalization

Face frontalization is an extremely challenging synthesis

problem due to its ill-posed nature. Traditional methods ad-

dressing this problem can be divided into three categories:

3D/2D local texture warping [12, 39], statistic modeling

[24] and deep learning based methods [4, 14, 18, 33, 34, 35].

Hassner et al. [12] employ a single unmodified 3D refer-

ence surface to produce frontal view. A joint frontal view

reconstruction and landmark localization are optimized by

the minimization of the nuclear norm in [24].

With the development of deep learning, Kan et al. [18]

propose SPAE for face frontalization via auto-encoders. Y-

im et al. [34] introduce a multi-task learning for frontal view

synthesis. Yang et al. [33] employ a recurrent transforma-

tion unit to synthesize discrete 3D views. Moreover, Cole et

al. [4] decompose faces into a sparse set of landmarks and

aligned texture maps by a network, and then combine them

by a differentiable image warping operation.

Benefiting from GAN, Huang et al. [14] propose TP-

GAN, which processes profile view faces through glob-

al and local networks separately. Some domain knowledge

such as symmetry and identity information of face is used

to make the synthesized faces photorealistic. Towards large-

pose face frontalization in the wild, FF-GAN [35] is pro-

posed to incorporate 3D face model into GAN. In this way,

the 3DMM conditioned GAN can retain the visual quality

under occlusions during frontalization.
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2.3. Recognition via Generation

Face frontalization provides a practical way for recogni-

tion via generation. Recognition can be directly performed

on the synthesized frontal face image without retraining the

recognition models. With the help of generative models,

recognition via generation has drawn much attention recent-

ly. Benefiting from dual learning [31], introducing genera-

tive procedure into discriminative tasks is an effective way

to improve the performance. Tran et al. [28] propose DR-

GAN to learn a generative and discriminative representation

in addition to image generation. The representation is dis-

entangled from pose variations through pose embedding in

the generator and pose estimation in the discriminator. DR-

GAN achieves significant improvements in pose-invariant

face recognition on various face databases. DA-GAN [37]

is proposed to synthesize profile face images by adversarial

training. It uses a 3D face model to simulate profile face and

then recovers the lost information inherent from 3D model

space to 2D image space. The qualitative and quantitative

experiments on IJB-A [20] show the effectiveness of recog-

nition via generation framework. Moreover, Song et al. [26]

introduce adversarial learning into a cross-spectral face hal-

lucination, facilitating heterogeneous face recognition via

generation.

3. Approach

Face rotation aims to synthesize an arbitrary pose face

image Ib from a given pose face image Ia. Our goal is

to learn such a synthesizer that can infer the correspond-

ing view images. Particularly, we model the synthesizer as

a CNN with u-net [15] architecture. In order to make the

synthesized images photorealistic and preserve their iden-

tity information, we introduce a couple-agent discriminator

with an identity preserving constraint to incorporate prior

knowledge from data distribution and domain knowledge

of faces. Thus the synthesizer can exactly recover and re-

construct the lost information inherent in face rotation.

The overall framework of our proposed Couple-Agent

Pose-Guided GAN (CAPG-GAN) is depicted in Fig. 1,

which mainly contains two parts: a pose-guided generator

and a couple-agent discriminator. Both of them are super-

vised by a weighted sum of several losses in an end-to-end

manner that jointly force the synthesized face images to be

photorealistic and identity preserving. In the rest of this sec-

tion, we will first introduce the architectures of the genera-

tor and the discriminator. Then, we details all the supervised

loss functions.

3.1. Network Architecture

3.1.1 Pose-Guided Generator

In order to rotate face images to arbitrary poses, our

generator should incorporate the pose information. Differ-

ent from the recent work [28] that encodes pose information

to an one-hot vector and the work [37] that employs a 3DM-

M to involve pose information, our generator can adaptively

learn such information from pose embeddings, i.e. the rota-

tion angles are learned by our model without knowing in

advance. The pose embeddings are obtained by an off-the-

shelf facial landmark detector [36]. We first apply the detec-

tor to estimate the coordinates of 5 facial landmarks. Then

we encode them as 5 heatmaps, named pose embeddings.

Each heatmap is filled by a Gaussian distribution where the

mean locates at the corresponding coordinate and the stan-

dard deviation is set to 2.

As shown in Fig. 1, we concatenate the source image Ia,

the source pose embeddings P a and the target pose embed-

dings P b as the inputs of our generator GθG and synthesize

the target view image Îb. That is,

Îb = GθG

(

Ia, P a, P b
)

(1)

where θG is the parameter of our generator. Guided by the

pose embeddings, our generator can synthesize face images

under various poses.

Inspired by the recent success of u-net architecture in

image-to-image translation [15, 38], our GθG consists of a

down-sampling encoder and an up-sampling decoder with

skip connections for multi-scale feature fusion. Such ar-

chitecture comprehensively retains contextual and textural

information, which is crucial for removing artifacts and

padding textures. The detailed architecture of GθG is list-

ed in Supplementary Materials.

3.1.2 Couple-Agent Discriminator

To exploit prior domain knowledge from data distribution

(pose and facial structure information), we extend the stan-

dard discriminator in vanilla GAN [8] with a couple-agent

structure, as shown in Fig. 1.

Agent 1 is a conditional discriminator Dθii implemented

by a CNN framework, where θii is the parameter. It takes

the source image Ia as the condition and pairs the output of

generator Îb (or the target natural image Ib) with the condi-

tion image Ia as its input. Our Dθii can not only distinguish

synthesized and natural face images, but also learn the dis-

tinction of rotated poses. It maps the input pairs to a proba-

bility map instead of one scalar value, as presented in [14].

Now, each position in the probability map corresponds to a

local region instead of the whole face. Thus Dθii specifical-

ly focuses on each semantic region.

Agent 2 is also a conditional discriminator Dθpe , having

the same architecture with agent 1, where θpe is the param-

eter. Specially, it employs the target pose embeddings P b as

the condition and pairs the output of generator Îb (or the tar-

get natural image Ib) with the condition pose embeddings
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P b as its input. This pairwise input encourages Dθpe to dis-

criminate the diversity of facial structure and capture the

local-aware information. The detailed architecture is listed

in Supplementary Materials.

3.2. Training Losses

Our CAPG-GAN is supervised by a weighted sum of

several losses in an end-to-end manner, including multi-

scale pixel-wise loss, conditional adversarial loss, identity

preserving loss and total variation regularization.

3.2.1 Multi-Scale Pixel-Wise Loss

We employ multi-scale pixel-wise L1 loss on the synthe-

sized face image Îb to constrain the content consistency,

Lpix =
1

S

S
∑

s=1

1

WsHsC

Ws,Hs,C
∑

w,h,c=1

∣

∣

∣
Îbs,w,h,c − Ibs,w,h,c

∣

∣

∣
(2)

where S denotes the number of scales. Ws and Hs repre-

sent the width and height of each image scale, respectively.

C is the number of image channel. We choose the last three

scales (32× 32, 64× 64 and 128× 128) of the synthesized

images produced by the decoder in our generator to calcu-

late this loss. The multi-scale pixel-wise loss may smooth

the synthesized images, but it is crucial for speeding up op-

timization and reconstructing the global information.

3.2.2 Conditional Adversarial Loss

To incorporate prior domain knowledge from data distri-

bution (pose and facial structure information) and remove

smoothness caused by multi-scale pixel-wise loss, we in-

troduce conditional adversarial loss to our CAPG-GAN.

The conditional adversarial loss of Dθii for distinguish-

ing synthesized image pairs {Îb, Ia} from real image pairs

{Ib, Ia} is formulated as follows:

Lii
adv = EIb∼P (Ib)

[

logDθii

(

Ib, Ia
)]

+

E
Îb∼P (Îb)

[

log
(

1−Dθii

(

Îb, Ia
))] (3)

The conditional adversarial loss of Dθpe for distinguish-

ing pairs {Îb, P b} from pairs {Ib, P b} takes the form,

L
pe
adv = EIb∼P (Ib)

[

logDθpe

(

Ib, P b
)]

+

E
Îb∼P (Îb)

[

log
(

1−Dθpe

(

Îb, P b
))] (4)

where Lii
adv and L

pe
adv aim to preserve pose information and

reconstruct local structure information respectively. Both of

them contribute to visually pleasing synthesized images.

3.2.3 Identity Preserving Loss

Supervised by the above two losses, our model can pro-

duce photorealistic face images, but these images are weak

for recognition due to lack of identification information. To

integrate domain knowledge of identities, we exploit an i-

dentity preserving network Dip to preserve the identity dis-

crimination of the synthesized face images, which is derived

from [28, 37, 14]. Dip is a feature extractor that can force

the features extracted from synthesized images Îb to be as

close to the features extracted from target images Ib as pos-

sible. It makes the same subject form a compact cluster with

small intra-class distances and variances in embedding s-

pace. We choose a pre-trained Light CNN [29] as Dip and

fix the parameters during training procedure. Specifically,

we define the identity preserving loss on the output of the

last pooling layer and the fully connected layer of Dip:

Lip =
∥

∥

∥
D

p
ip(Î

b)−D
p
ip(I

b)
∥

∥

∥

2

F
+
∥

∥

∥
D

fc
ip (Î

b)−D
fc
ip (I

b)
∥

∥

∥

2

2
(5)

where D
p
ip (·) and D

fc
ip (·) denote the output of the last pool-

ing layer and the fully connected layer, respectively. ‖·‖2
means the vector 2-norm while ‖·‖F represents the matrix

F-norm.

3.2.4 Total Variation Regularization

Usually, the images synthesized by GAN model have

many unfavorable artifacts [23], which deteriorate the vi-

sualization and the recognition performance. We impose a

total variation regularization term [16] on the final synthe-

sized images to alleviate this issue:

Ltv =
C
∑

c=1

W,H
∑

w,h=1

∣

∣

∣
Îbw+1,h,c − Îbw,h,c

∣

∣

∣
+
∣

∣

∣
Îbw,h+1,c − Îbw,h,c

∣

∣

∣

(6)

where W and H represent the width and height of the final

synthesized images.

3.2.5 Overall Loss

The total supervised loss is a weighted sum of the above

losses. The pose-guided generator GθG , couple-agent Dθii

and Dθpe are trained alternatively to optimize the following

min-max problem:

min
θG

max
θii,θpe

L = λ1Lpix+λ2L
ii
adv+λ3L

pe
adv+λ4Lip+λ5Ltv

(7)

where λ1, λ2, λ3, λ4 and λ5 are the trade-off parameters.

Solving this min-max problem makes our generator synthe-

size various view face images guided by pose embeddings

in photorealistic and identity preserving manners.
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4. Experiments

CAPG-GAN provides a flexible way to rotate an input

face to any pose controlled by facial landmarks. It can be

used for both photorealistic face synthesis and pose invari-

ant representation learning. For the former, we show quali-

tative results of both face frontalization and profile face gen-

eration. For the latter, we quantitatively evaluate face recog-

nition performance based on the synthesized face images

under both the controlled and in-the-wild settings. We ex-

tensively compare CAPG-GAN with state-of-the-art meth-

ods on the Labeled-Faces-in-the-Wild (LFW) database [13]

and the Multi-PIE database [9], which have been widely

used for face synthesis or recognition [32][35][14]. In the

following subsections, we begin with an introduction of set-

tings and databases. Then we demonstrate the merits of our

CAPG-GAN on qualitative synthesis results and quantitive

verification results over state-of-the-art methods. Lastly, we

conduct ablation study to demonstrate the benefits gained

from each part of CAPG-GAN.

4.1. Settings and Databases

Databases. The LFW database [13] contains 13,233 im-

ages of 5,749 people. It has been widely used to evaluate

synthesis or verification performance of various methods

under unconstrained environments. Since the face images

in LFW are collected from the web and contain various

pose, expression and illumination variations, it is extremely

challenging to synthesize a photorealistic frontal face. For

the verification protocol [13], face images are divided in 10

folds that contain different identities and 600 face pairs. We

evaluate face verification performance on the synthesized

images and compare CAPG-GAN with previous face syn-

thesized or rotation methods.

The Multi-PIE database [9] is the largest database for

evaluating face synthesis and recognition in the controlled

setting. There are four sessions in this database. The face

images from 337 identities have 20 illumination levels and

15 poses ranging from −90o to 90o. In this paper, the face

images with neutral expression under 20 illuminations and

13 poses within ±90o are used. The two poses from the

two additional cameras (08 1 and 19 1) located above the

subject are not considered. We follow the testing protocols

in [32][34][14] and unitize two settings to evaluate different

methods.

In the first setting [32], we only use the images from the

session 1, which contains faces of 250 subjects. The training

set is composed of all the images (13 poses and 20 illumina-

tion levels) of the first 150 identities, i.e., 150× 13× 20 =
39000 images in total. For testing, one gallery image with

frontal view and normal illumination is used for each of

the remaining 100 subjects. The numbers of the probe and

gallery sets are 24,000 and 100 respectively. The second set-

ting, followed by the protocol from [34], includes neutral

expression images from all four sessions. We use the first

200 subjects and the remaining 137 subjects for training and

testing respectively. Each testing identity has one gallery

image from his first appearance. Hence, there are 161,460,

72,000, 137 images in the training, probe and gallery set-

s respectively. Note that, for the two settings, there are no

overlap subjects between the training and testing sets.

Implementation Details. To train CAPG-GAN, pairs of

images {Ia, Ib} from multiple poses and identities are re-

quired. Enumerating all the corresponding pairs is infea-

sible and time consuming during training. To ease it, we

simplify the training procedure as a bidirectional face rota-

tion task: one is from profile view with arbitrary poses to

frontal view, the other one is from frontal view to profile

view with arbitrary poses. That means the corresponding

pairs {Ia, Ib} consist of one frontal face image and one pro-

file face image, but which one comes from frontal view is

stochastic during training. RGB images of a size 128× 128
are used in all experiments for both real and synthesized

images. Our identity preserving network is trained on MS-

Celeb-1M [11] and fine-tuned on the real training images

of Multi-PIE. Our model is implemented with Pytorch. In

all our experiments, we empirically set λ1 = 10, λ2 = 0.1,

λ3 = 0.1, λ4 = 0.02, λ5 = 1e − 4. The learning rate is

initialized by 0.0002 and linearly decayed after each epoch

until reaching 0.

4.2. Face Synthesis

In this subsection, we systematically compare the syn-

thesis results of CAPG-GAN against state-of-the-art face

synthesis methods. CAPG-GAN is trained on the training

set of the Setting 2 from the Multi-PIE database. The syn-

thesis results are verified on the testing set of the Setting 2

and the LFW database. Hence, there are no overlap subject-

s between the training and testing sets. Since most previ-

ous frontal view synthesis methods are dedicated to address

face synthesis problem within a small pose range of ±60◦,

we firstly show the synthesis results of different methods

under the pose of 45◦ and 30◦ in Fig. 2 and then present

large pose situation with 75◦ and 90◦ in Fig. 3. Particular-

ly, the synthesized results of TP-GAN and our CAPG-GAN

are obviously better than other methods in terms of global

structure and local texture. The results of our CAPG-GAN

are comparable to or better than those of TP-GAN. Com-

pared to TP-GAN that can only synthesize a frontal face,

our CAPG-GAN is more flexible because it resorts to land-

marks as a condition to rotate a face image. Moreover, the

network structure of CAPG-GAN is simpler than that of TP-

GAN.

Note that, different from previous methods, CAPG-GAN

can rotate an input face to any pose controlled by facial

landmarks. Hence, CAPG-GAN can synthesize both frontal

and profile faces. Fig. 5 further plots the synthesized frontal
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(a) Profile (b) Ours (c) [14] (d) [28] (e) [34] (f) [7] (g) [39] (h) [12] (i) Frontal

Figure 2. Synthesis results of different methods under the pose of 45◦ (first two rows) and 30
◦ (last row).

(a) Profile (b) Ours (c) [14] (d) [35] (e) Frontal

Figure 3. Synthesis results of different methods under the pose of

75
◦ (first two rows) and 90

◦ (last two rows).

and profile results by CAPG-GAN under poses 90◦, 75◦,

60◦, 45◦, 30◦ and 15◦. The first and third images in each

column are ground truth, and the second and forth images

are synthesized results. Moreover, the synthesis results of

different target pose embeddings are shown in Fig. 6. We

observe that CAPG-GAN can not only well preserve the

overall facial structure but also recover the unseen ears

and cheeks in an identity consistent way. Both synthesized

frontal and profile faces have good qualities. These good

results may benefit from the heatmaps of facial landmarks.

The heatmaps potentially guide CAPG-GAN to synthesize

some particular facial areas and reconstruct local structure

that have large variations during face rotation. These results

also suggest that given enough training data and a proper

network structure, it is feasible to synthesize a photorealis-

tic frontal face image from a large pose.

To further verify the synthesis ability of CAPG-GAN in

unconstrained environments, we perform visual compari-

son of face synthesis on the LFW database. Fig. 4 shows

some synthesis results of different methods. Note that our

method is only trained on Mulit-PIE and tested on LFW. As

expected, CAPG-GAN can also obtain good visual results

(a) LFW (b) Ours (c) [14] (d) [39]

Figure 4. Visual comparison of face synthesis on the LFW

database. Our method is trained on Mulit-PIE and tested on LFW.

on LFW. Our visual results are obviously better than [39]

and comparable to [14].

4.3. Identity Preserving Property

In face synthesis, recognition accuracy is commonly

used to quantitatively evaluate the identity preserving abili-

ty of different methods. Face synthesis is an ill-posed prob-

lem. An original face image may not contain all pixel-level

information of one subject. A face synthesis method can

generate the lost pixel-level information but may also lose

some identity information. If the synthesized images can

result in better recognition accuracy, more identity infor-

mation is preserved during synthesis process. Hence, in this

subsection, we quantitatively compare the proposed method

with other methods in terms of recognition accuracy.

Table 1 shows the Rank-1 accuracies of different meth-

ods under the Setting 1 of Multi-PIE. The accuracies of al-

l methods drop as pose degree increases. This is because

more facial appearance information is lost and synthesis

task becomes more difficult when pose degree increases.

The results of Light CNN are used as the baseline of our

method. We compare CAPG-GAN with CPF [34], Hass-
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Figure 5. Synthesized frontal and profile results by CAPG-GAN under different poses. From top left to bottom right, the poses are 90
◦,

75
◦, 60◦, 45◦, 30◦ and 15

◦. The first and third images in each column are ground truth, and the second and forth images are synthesized.

(a) +90◦ (b) +75◦ (c) +60◦ (d) +45◦ (e) +30◦ (f) +15◦ (g) 0◦ (h) −15◦ (i) −30◦ (j) −45◦ (k) −60◦ (l) −75◦ (m) −90◦

Figure 6. Synthesis results of different target pose embeddings.

Table 1. Rank-1 recognition rates (%) across views and illumina-

tions under Setting 1.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

CPF[34] - - - 71.65 81.05 89.45

Hassner et al. [12] - - 44.81 74.68 89.59 96.78

HPN[5] 29.82 47.57 61.24 72.77 78.26 84.23

FIP 40[40] 31.37 49.10 69.75 85.54 92.98 96.30

c-CNN Forest[32] 47.26 60.66 74.38 89.02 94.05 96.97

TP-GAN[14] 64.03 84.10 92.93 98.58 99.85 99.78

Light CNN[29] 9.00 32.35 73.30 97.45 99.80 99.78

CAPG-GAN 77.10 87.40 93.74 98.28 99.37 99.95

ner et al. [12], HPN [5], FIP 40 [40], c-CNN Forest [32]

and TP-GAN [14], and observe that CAPG-GAN not on-

ly significantly outperforms its competitors under challeng-

ing ±90o but also achieves the best or comparable perfor-

mance across other angles. It seems that the larger the head

pose, the greater the improvement is obtained by CAPG-

GAN. These quantitative results demonstrate that CAPG-

GAN lose less identity information during face synthesis.

Table 2. Rank-1 recognition rates (%) across views, illuminations

and sessions under Setting 2.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

FIP+LDA[40] - - 45.9 64.1 80.7 90.7

MVP+LDA[41] - - 60.1 72.9 83.7 92.8

CPF[34] - - 61.9 79.9 88.5 95.0

DR-GAN[28] - - 83.2 86.2 90.1 94.0

FF-GAN[35] 61.2 77.2 85.2 89.7 92.5 94.6

TP-GAN[14] 64.64 77.43 87.72 95.38 98.06 98.68

Light CNN[29] 5.51 24.18 62.09 92.13 97.38 98.59

CAPG-GAN 66.05 83.05 90.63 97.33 99.56 99.82

Table 2 further tabulates the results of different methods

under the Setting 2 of Multi-PIE. The Setting 2 is challeng-

ing than the Setting 1. This is because there are 72,000 and

137 images in probe and gallery sets respectively. The probe

set contains large appearance variations whereas the gallery

set only contains one image per subject. Once more, the re-

sults of Light CNN are used as the baseline of our method.

We observe that the methods can be ordered in ascend-
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Table 3. Face verification accuracy (ACC) and area-under-curve

(AUC) results on LFW.
Method ACC(%) AUC(%)

Ferrari et al. [6] - 94.29

LFW-3D[12] 93.62 88.36

LFW-HPEN[39] 96.25 99.39

FF-GAN[35] 96.42 99.45

CAPG-GAN 99.37 99.90

Table 4. Model comparison: Rank-1 recognition rates (%) under

Setting 2.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

w/o Lip 40.77 46.13 53.25 64.74 76.16 86.12

w/o Ltv 61.33 78.98 87.68 95.58 99.03 99.74

w/o Ladv 46.83 56.90 67.68 85.68 96.26 99.50

w/o Lii
adv 54.68 66.09 75.90 89.38 97.79 99.73

w/o L
ip

adv
57.78 71.17 82.05 92.50 97.57 99.63

CAPG-GAN 66.05 83.05 90.63 97.33 99.56 99.82

ing Rank-1 accuracy as FIP+LDA [40], MVP+LDA [41],

CPF [34], DR-GAN [28], FF-GAN [35], TP-GAN [14] and

CAPG-GAN. CAPG-GAN is significantly better than other

methods. Particularly, the same as TP-GAN, CAPG-GAN

also directly uses the synthesized images to perform recog-

nition and follows the way of recognition via generation.

Besides, Table 3 shows the accuracies of different meth-

ods under in-the-wild setting. As expected, CAPG-GAN

achieves 99.37% on accuracy and 99.90% on AUC, which

are also comparable with other state-of-the-art methods. Al-

though CAPG-GAN is not trained on the LFW database, its

synthesized face images can also further improve recogni-

tion accuracy, suggesting the identity preserving character

of CAPG-GAN in the wild.

4.4. Ablation Study

In this subsection, five loss function combinations in

CAPG-GAN are studied to give an insight into their respec-

tive roles. We report both qualitative visualization result-

s and quantitative recognition results for a comprehensive

comparison.

Fig. 7 plots visual comparisons between CAPG-GAN

and its five incomplete variants. We observe that CAPG-

GAN is visually better than its variants across all poses.

Without the Lip loss, the local textures around eyes on

the generated profile faces are few and the facial contours

are distorted. Without the Ltv loss, there are artifacts on

the generated faces. Without the Ladv loss (both Lii
adv and

L
pe
adv), the generated faces tend to be blur, suggesting the

usage of adversarial learning. Without the Lii
adv loss, the

rotation around nose on the generated frontal faces is in-

complete, indicating the agent 1 discriminator dominates

rotation validity. Without the L
pe
adv loss, the structures of

eyes and mouth have deformations, revealing the agent 2

discriminator enforces facial structures. These visual results

demonstrate that each component in CAPG-GAN is essen-

tial to obtain a photorealistic face image.

Table 4 further tabulates the quantitative results of dif-

ferent variants of CAPG-GAN. The recognition accuracy is

(a) (b) 90◦ (c) 60◦ (d) 30◦

Figure 7. Model comparison: synthesis results of CAPG-GAN and

its variants.

evaluated on the synthetic images generated from each vari-

ant. We observe that the accuracy will decrease if one loss

function is not used. Particularly, the accuracy drops signif-

icantly for all poses if the Lip loss is not adapted. These

results suggest that each component in CAPG-GAN is es-

sential for identity preserving during synthesis.

5. Conclusion

This paper has proposed a CAPG-GAN method to syn-

thesize a face under various head poses, including extreme

profile views. CAPG-GAN can synthesize both neutral and

profile head pose face images. It has encoded the head pose

information by facial landmark heatmaps into an end-to-

end deep network. This pose information not only forms

a mask image to guide the generator in learning process

but also provides a flexible controllable condition during

inference, which makes our CAPG-GAN differ from both

previous GAN and 3DMM based methods. Four kinds of

loss functions have been used in CAPG-GAN to synthe-

size photorealistic and identity preserving results. Extensive

experimental results on face synthesis and face recognition

demonstrate that our method not only presents compelling

visual results but also facilitates to improve recognition ac-

curacy of large pose face recognition.
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