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High Fidelity Face Manipulation
with Extreme Poses and Expressions
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Abstract—Face manipulation has shown remarkable advances
with the flourish of Generative Adversarial Networks. However,
due to the difficulties of controlling structures and textures, it
is challenging to model poses and expressions simultaneously,
especially for the extreme manipulation at high-resolution. In this
paper, we propose a novel framework that simplifies face manip-
ulation into two correlated stages: a boundary prediction stage
and a disentangled face synthesis stage. The first stage models
poses and expressions jointly via boundary images. Specifically,
a conditional encoder-decoder network is employed to predict
the boundary image of the target face in a semi-supervised
way. Pose and expression estimators are introduced to improve
the prediction performance. In the second stage, the predicted
boundary image and the input face image are encoded into the
structure and the texture latent space by two encoder networks,
respectively. A proxy network and a feature threshold loss are
further imposed to disentangle the latent space. Furthermore,
due to the lack of high-resolution face manipulation databases
to verify the effectiveness of our method, we collect a new high-
quality Multi-View Face (MVF-HQ) database. It contains 120,283
images at 6000×4000 resolution from 479 identities with diverse
poses, expressions, and illuminations. MVF-HQ is much larger in
scale and much higher in resolution than publicly available high-
resolution face manipulation databases. We will release MVF-
HQ soon to push forward the advance of face manipulation.
Qualitative and quantitative experiments on four databases show
that our method dramatically improves the synthesis quality.

Index Terms—Face Manipulation, Extreme Pose and Expres-
sion, High-Resolution, MVF-HQ.

I. INTRODUCTION

PHOTO-realistic face manipulation with poses and expres-
sions is a meaningful task in a wide range of fields, such

as movie industry, entertainment, and photography technolo-
gies. With the flourish of Generative Adversarial Networks
(GANs) [1], [2], face manipulation has achieved significant ad-
vances in recent years [3], [4], [5]. However, on the one hand,
existing face manipulation methods mainly focus on only one
facial variation, i.e. only changing poses [6] or expressions [4].
On the other hand, the methods of manipulating large poses
and expressions have still been limited to a low-resolution
(128×128) [7]. Hence, it is challenging to model both poses
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and expressions [8], especially for the extreme manipulation
(facial poses beyond ±60o) at high-resolution.

For face manipulation, a straightforward way is applying
image-to-image translation methods [9], [10]. However, in
the case of extreme manipulation, it is hard for this way to
guarantee facial structures and textures. As shown in Fig. 1
(a), the facial local structures, such as the eyes, the nose, and
the mouth, are unclear. Recent observations [10], [11] show
that the boundary information is crucial to high fidelity image
synthesis. Meanwhile, several structure-guided methods have
been proposed for face manipulation [7], [12]. For example,
CAPG-GAN [7] leverages facial landmarks to rotate faces. SC-
FEGAN [12] realizes facial local editing with sketch guidance.
Most structure-guided methods directly concatenate a face
image and its structure guidance in the image space. However,
such direct concatenation is infeasible for the extreme manipu-
lation at high-resolution, due to more complex structures and
textures. As shown in Fig. 1 (b), the local structures of the
synthesized face are fuzzy and the textures are blurry, such
as the mouth. This phenomenon may be caused by lacking
disentanglement, which is important for interpretable image
manipulation [13], between structures and textures. Recently,
[14] proposes a simple disentanglement method. It introduces a
face recognition network to extract structure invariant features,
and then concatenates the structure invariant features with
structure features to synthesize faces. As shown in Fig. 1 (c),
the disentanglement does make the structure of the synthesized
face clearer, but the textures are somewhat lost. This may be
due to the fact that the features of the face recognition network
are too compact, leading to severe texture loss in such a high-
resolution case.

Based on the above observations, we propose a novel
framework for high-resolution extreme face manipulation, as
shown in Fig. 3. Our framework simplifies this challenging
task into two correlated stages: a boundary prediction stage
and a disentangled face synthesis stage. The first stage models
poses and expressions jointly via boundary images. Different
from most of the previous methods that require manually
manipulation of landmarks [11], [7], we can flexibly generate
the desired boundary images merely by controlling the pose
and the expression vectors. Specifically, a conditional encoder-
decoder network is employed to predict the boundary image of
the target face in a semi-supervised way. Pose and expression
estimators are introduced to improve the prediction perfor-
mance. The second stage encodes the predicted boundary
image and the input face image into the structure and the
texture latent space by two encoder networks, respectively.
Since it is hard to disentangle structures and textures [13], we



JOURNAL OF LATEX CLASS FILES 2

Fig. 1: Visualization comparisons (512×512 resolution) of
different methods. (a) Image-to-image translation [10]. The
local structures, e.g. the mouth, are unclear; (b) Concatenating
the input face and the boundary of the target face. The local
structures are fuzzy and the textures are blurry; (c) Directly
utilizing a face recognition network to disentangle structures
and textures [14]. The local structures are clearer, but the
textures are somewhat lost; (d) Our method. Both of the
structures and the textures are maintained well.

introduce a face recognition network as a proxy to facilitate
disentanglement. Instead of leveraging the compacted features
of the proxy [14] directly, we propose a feature threshold loss
to control the compactness between our learned face features
and the compacted features. The result of our method in Fig. 1
(d) has not only clear structures, but also realistic textures.
More synthesis results (1024×1024 resolution) are presented
in Fig. 8, from which we observe that our method generates
high-quality images even under the largest 90o. Note that it
is rather challenging to manipulate high-resolution faces with
such extreme facial structure changes. As far as we know,
this has never been achieved except for our work.

In addition, most publicly available face manipulation
databases are limited in resolution, e.g. the resolution of
the original images in the MultiPIE database [15] is only
640×480. Although recent high-resolution databases CelebA-
HQ [16] and FFHQ [17] reach a resolution of 1024×1024,
the pose variants in these databases are inadequate. According
to our statistics (estimating poses via the detected facial
landmarks), about 92% of the images in CelebA-HQ are nearly
frontal (within ±30o), and only about 0.7% of the images have
large poses (beyond ±60o), as shown in Fig. 2. For FFHQ,
the nearly frontal images and large pose images account
for about 90% and 0.8%, respectively. Due to the limitation
of these databases, it seems impossible for existing GANs-
based methods, such as StyleGAN [17], [18], to generate
high-quality faces with large poses. Therefore, we collect a
new high-quality Multi-View Face (MVF-HQ) that contains
13 views from −90o to +90o (the interval is 15o), which
fills in the blank of the high-resolution multi-view database.
The comparisons between our MVF-HQ database and other
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Fig. 2: Facial pose distribution of high-resolution databases,
including CelebA-HQ [16], FFHQ [17], and our MVF-HQ.

publicly available high-resolution face manipulation databases
are presented in Fig. 2 and Table I. It is obvious that MVF-
HQ has the following three advantages: (1) Large-Scale.
MVF-HQ consists of 120, 283 images, far more than other
high-resolution databases (70, 000 at most [17]). (2) High-
Resolution. The resolution of the original images in MVF-
HQ is up to 6000×4000, while other databases only reach
1024×1024 resolution [16], [17]. (3) Abundant Variants.
MVF-HQ contains 13 views from −90o to +90o as well as
diverse expressions and illuminations. It will be released soon
to push forward the advance of face manipulation.

In summary, the main contributions are as follows:
• High-resolution extreme face manipulation is formulated

as a stage-wise learning problem, which contains two
correlated stages: a boundary prediction stage and a
disentangled face synthesis stage.

• The joint modeling of poses and expressions is imple-
mented by the boundary prediction in the first stage,
which makes it flexible to obtain desired boundary im-
ages. Besides, a proxy network and a feature threshold
loss are introduced in the second stage to disentangle
structures and textures for realistic synthesis.

• We collect a new MVF-HQ database that contains
120, 283 diverse face images at 6000×4000 resolution
from 479 identities. It has much larger scale and much
higher resolution than publicly available high-resolution
face manipulation databases.

• We are the first to achieve the rather challenging high-
resolution face manipulation with extreme facial structure
changes, even for faces at 90o. Extensive experiments
on the MultiPIE [15], the RaFD [19], the CelebA-HQ
[16], and our MVF-HQ databases fully demonstrate the
effectiveness of our method.

II. RELATED WORK

A. Face Manipulation

Face manipulation has attracted great attention to computer
vision and graphics [20], [21], [22], [23], [24], [25], [26], [27],
[28]. Pose rotation [29], [7] and expression editing [4], [30] are
the two of the main research directions. TP-GAN [6] adopts a
two-pathway generative network architecture, achieving photo-
realistic face frontalization from a single image. DA-GAN [31]
employs a dual attention mechanism into face frontalization,
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including a self-attention for the generator and a face-attention
for the discriminator. FaceID-GAN [5] introduces an identity
classifier as a competitor to better preserve identity for face
synthesis. UV-GAN [32] completes the facial UV map to
improve the performance of pose-invariant face recognition.
By controlling the magnitude of Action Units (AUs), GAN-
imation [4] renders expressions in a continuum. MoCoGAN
[30] separates the hidden features as a content subspace and
a motion subspace, which makes it possible to synthesize
different expressions. AF-VAE [33] introduces an additive
Gaussian Mixture prior in the structure space, facilitating
multi-model face synthesis.

Other face manipulation tasks also have achieved consider-
able development, such as facial makeup [34], face inpainting
[35], [36], cross-spectral hallucination [37], [38]. PairedCy-
cleGAN [34] introduces a new cycle generative network that
transfers makeup styles and removes the makeup in an asym-
metric manner. By this means, it is able to wear makeup for
a target face based on a reference. StarGAN [3], [39] realizes
multi-domain face attribute transfer by a single generator.
[35] utilizes the surrounding background patches to facilitate
image inpainting. InterFaceGAN [40] realizes face editing via
analyzing the latent semantics encoded by GANs. [41] first
proposes a unified framework to achieve pose-invariant facial
expression recognition, face synthesis, and face alignment
simultaneously. The elaborate design enables these modules
to complement and enhance each other.

Besides the above deep generative model based methods,
there are also many approaches based on the 3D morphable
model (3DMM) [42]. As a comparatively mature face analysis
technology, 3DMM has been incorporated into various face
manipulation tasks. [43] suggests the best facial makeup auto-
matically for users. [44] realizes real-time facial expression
transfer via an RGB-D sensor. Face2Face [45] is able to
reenact a video sequence according to a source actor. [46]
makes the generated video match a given audio track.

B. Image Synthesis
As one of the primary means for face manipulation, image

synthesis has made great progress in recent years [1], [47],
[48], [49], [50]. Image synthesis can be done either in an un-
conditional manner [16], [51], [52] or in a conditional manner
[9], [53]. For unconditional synthesis, images are generated
from noises without any conditions. GANs [1], [54], [2] are the
representative unconditional synthesis models that consist of
a generator and a discriminator to play a min-max game. The
generator synthesizes data from a prior to confuse the discrimi-
nator, while the discriminator tries to distinguish the generative
data from the real data. PG-GAN [16] significantly improves
the synthesis quality by progressively growing the generator
and the discriminator. Variational AutoEncoders (VAEs) [47]
are the other representative unconditional synthesis models,
which optimize the evidence lower bound objective (ELBO)
to learn the data distribution. IntroVAE [55] employs an
introspective variational generation model to synthesize high-
resolution images without discriminators. VQ-VAE [56], [57]
learns discrete representations with an autoregressive prior for
high-quality generation.

For conditional image synthesis, the synthesized images
need to meet the given conditions. pix2pix [9] introduces a
conditional generative adversarial loss for paired image-to-
image translation. pix2pixHD [10] further improves pix2pix
with a coarse-to-fine generator and a multi-scale discrimi-
nator, realizing higher fidelity image translation. CycleGAN
[58] proposes a cycle consistent way for unpaired image-to-
image translation. BigGAN [59] first achieves high-resolution
(512×512) conditional image synthesis on the ImageNet
database [60]. StyleGAN [17], [18] employs an alternative
generator to learn attributes automatically. Benefitting from
the proposed spatially-adaptive normalization, SPADE [53]
synthesizes photo-realistic landscapes by the semantic layout.

C. Face manipulation databases
Publicly available face manipulation databases can be di-

vided into two categories: low-resolution databases and high-
resolution databases. Representative low-resolution databases
include Celeb-A [61], CAS-PEAL-R1 [62], and MultiPIE [15].
The resolutions of the original images in these three databases
are 505×606, 640×480, and 640×4801, respectively. Celeb-A
is an in-the-wild face database that contains 202, 599 images
with 40 attribute annotations. It is wildly used in face attribute
editing. Both the CAS-PEAL-R1 and the MultiPIE databases,
which have 30, 863 and 750, 000+ images respectively, are in
the controlled environment. They are mainly adopted for pose
invariant face recognition.

Due to the high cost of data acquisition, there are a lim-
ited number of high-resolution face manipulation databases.
Among them, RaFD [19] is widely used for facial expression
analysis. However, both the number of images (8, 040) and the
resolution (681×1024) are limited. BioHDD [63] is mainly
leveraged to evaluate biometric identification in the case of
heavy degradation. The resolution of the registration images
in BioHDD is up to 4368×2912, whereas the number of
these images is only 6062. Recently released CelebA-HQ
[16] and FFHQ [17] reach 1024×1024 resolution. The former
contains 30k images that mainly derive from the Celeb-
A database. Researchers adopt image processing techniques,
such as super-resolution, to convert low-resolution images into
higher-resolution ones. The latter consists of 70k images that
are crawled from Flickr. However, according to our statistics,
most of the images in CelebA-HQ and FFHQ are nearly
frontal, making it hard to edit large poses on these databases.

III. METHOD

Given an input face Ia, the goal of our method is to
synthesize the target face Ib, according to a given pose vector
pb and an expression vector eb. In addition, we denote the
boundary image of the input face and the target face as Ba

and Bb, respectively. The face manipulation task is explicitly
divided into two stages: a boundary prediction stage and a
disentangled face synthesis stage, as shown in Fig. 3. In the
rest of this section, we will present them in detail.

1The MultiPIE database contains a small number of frontal images at
3072×2048 resolution, but most of the images are 640×480 resolution.

2BioHDD also has many low-resolution images with various attributes.
Please refer to [63] for details.
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A. Boundary Prediction

At this stage, we predict the target boundary image ac-
cording to the given conditional vectors, including a pose
vector and an expression vector. As shown in Fig. 3, we
utilize an encoder network Enc and a decoder network Dec
to realize this conditional boundary prediction. Specifically,
through Enc, we first map the input boundary image Ba into
the latent space za = Enc(Ba). Then, the target pose vector
pb and the expression vector eb are concatenated with the
hidden variable za to provide conditional information. Lastly,
the target boundary image is generated by the decoder network
B̂b = Dec(za, pb, eb).

The pose and the expression are discrete in the database,
e.g. the MultiPIE database [15] only contains 15 discrete
poses and 6 discrete expressions. However, we expect that this
stage can generate boundary images with unseen poses and
expressions. Hence, we introduce a semi-supervised training
manner. For the poses and the expressions in the database,
we can utilize the corresponding ground truth to constrain the
generated boundary images. For the poses and the expressions
that do not exist in the database, we utilize two pre-trained
estimators, including a pose estimator Fp and an expression
estimator Fe, to constrain the generated boundary images by
conditional regression.

Two loss functions are involved in this stage, including a
pixel-wise loss and a conditional regression loss.

Pixel-Wise Loss. For the poses and the expressions
that belong to the database, a pixel-wise L1 loss is uti-
lized to constrain the predicted boundary image B̂b =
Dec(Enc(Ba), pb, eb):

Lpix-boud =
∣∣Dec(Enc(Ba), pb, eb)−Bb

∣∣ , (1)

where Bb is the ground truth of the target boundary image.
Conditional Regression Loss. For the poses and the ex-

pressions that do not exist in the database, we first ran-
domly produce pr and er to generate a boundary image
Br = Dec(za, pr, er). Then, we utilize a pose estimator Fp

and an expression estimator Fe, which are pre-trained on the
boundary images of the training databases, to estimate the pose
p̂r = Fp(Br) and the expression êr = Fe(B

r), respectively.
The estimated p̂r and êr are used to constrain the generated
boundary image. The intuition is that the estimated p̂r and êr

of Br should be equal to the conditional vectors pr and er,
respectively. Hence, the conditional regression loss, including
a pose regression term and an expression regression term, is
formulated as:

Lreg = ||Fp(Dec(za, pr, er))− pr||22
+ ||Fe(Dec(z

a, pr, er))− er||22.
(2)

The parameters of the pre-trained Fp and Fe are fixed during
the training procedure.

B. Disentangled Face Synthesis

This stage leverages the predicted boundary image to per-
form realistic face synthesis. As shown in Fig. 3, we first
utilize two encoders GB

enc and GI
enc to map the predicted
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Fig. 3: The framework of our method, which consists of a
boundary prediction stage and a disentangled face synthesis
stage. The first stage predicts the boundary image of the target
face in a semi-supervised way. Pose and expression estimators
are employed to improve the prediction performance. The
second stage leverages the predicted boundary image to syn-
thesize the target face. A proxy network and a feature threshold
loss are introduced to disentangle structures and textures in the
latent space.

boundary image B̂b and the input face Ia to fBb = GB
enc(B̂

b)
and fIa = GI

enc(I
a), respectively. Then, we disentangle

structures and textures in the latent space, by a proxy network
Proxy and a feature threshold loss. After the disentanglement,
the boundary features fBb and the image feature fIa are
concatenated to feed into the decoder GI

dec, synthesizing the
final target face Îb = GI

dec(fBb , fIa).
The loss functions in this stage are presented as below,

including a feature threshold loss, a multi-scale pixel-wise
loss, a multi-scale conditional adversarial loss, and an identity
preserving loss.

Feature Threshold Loss. The feature threshold loss is
designed to assist in disentangling structures and textures in
the latent space. Given that directly disentangling is difficult,
we employ a face recognition network LightCNN [64] pre-
trained on MS-Celeb-1M [65] as a proxy network Proxy,
whose features fPa = Proxy(Ia) are thought to be structure
invariant [14]. In addition, instead of directly utilizing the
compact features fPa that will result in texture loss, as
shown in Fig. 1 (c), we introduce a feature threshold loss
for disentanglement. Specifically, the feature threshold loss
controls the feature distance between the learned face features
fIa = GI

enc(I
a) and the compact features fPa = Proxy(Ia)

with a threshold margin m:

Lthr =
[
||GI

enc(I
a)− Proxy(Ia)||22 −m

]+
, (3)

where [·]+ = max(0, ·). As the loss Lthr decreases, the face
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features fIa are closer to the compact features fPa , which
means structures and textures are better disentangled. Mean-
while, the threshold margin m controls the compact degree of
the face features fIa , which is employed to maintain textures.
The parameter analysis of m is presented in Section V-D.

Multi-Scale Pixel-Wise Loss. We introduce a multi-scale
pixel-wise loss to constrain the synthesized face on different
scales. Specifically, with the downsampling operation on fac-
tors of 2 and 4, we first obtain an image pyramid of 3 scales of
the synthesized faces and the ground truth faces, respectively.
Then, we calculate the pixel-wise loss on these 3 scales faces:

Lpix-mul =
∑

s=1,2,3

∣∣GI
dec(fBb , fIa)s − Ibs

∣∣ , (4)

where s denotes the scales. The pixel-wise loss at the top of the
image pyramid pays more attention to the global information,
because it has a larger receptive field. On the contrary, the
pixel-wise loss in the bottom of the image pyramid is more
concerned with the recovery of details.

Multi-Scale Conditional Adversarial Loss. To improve the
sharpness of the synthesized face image, we also introduce a
conditional adversarial loss. The discriminator tries to distin-
guish the fake image pair {Îb, Bb} from the real image pair
{Ib, Bb}, while the generator tries to fool the discriminator:

Ladv = EIb∼P (Ib)

[
logD(Ib, Bb)

]
+ EÎb∼P (Îb)

[
log(1−D(Îb, Bb))

]
.

(5)

In order to improve the ability of the discriminator, we adopt
the strategy of [10] that discriminates the synthesized images
on three different scales.

Identity Preserving Loss. In order to further preserve the
identity information of the synthesized faces, we adopt an
identity preserving loss as [7]. Specifically, a pre-trained face
recognition network [64] is introduced as a feature extractor
Dip. It forces the identity features of the synthesized face Îb

to be as close to the identity features of the real face Ib as
possible. The identity preserving loss is formulated as:

Lip = ||Dp
ip(Îb)−Dp

ip(Ib)||22 + ||Dfc
ip (Îb)−Dfc

ip (Ib)||22. (6)

where Dp
ip and Dfc

ip denote the output of the last pooling layer
and the fully connected layer, respectively.

C. Overall Loss

The boundary prediction stage and the disentangled face
synthesis stage are trained separately. That is, the boundary
prediction stage is first trained, and then the face synthesis
stage is trained based on the predicted boundary. For the
boundary prediction stage, the overall loss is:

Lbp = Lpix-bound + λ1Lreg. (7)

For the face synthesis stage, the overall loss is:

Lfs = Ladv + α1Lthr + α2Lpix-mul + α3Lip, (8)

where λ1, α1, α2, and α3 are trade-off parameters.

Neutral Smile Surprise

Ahead Behind Left

Fig. 4: Examples of the expressions.

Neutral Smile Surprise

Ahead Behind Left

Fig. 5: Examples of the illuminations.

IV. MULTI-VIEW FACE (MVF-HQ) DATABASE

Due to the lack of high-resolution face databases to verify
the effectiveness of our method, we collect the MVF-HQ
database. This section introduces the details of MVF-HQ in
terms of technical setup, data acquisition, data processing, and
comparisons.

A. Technical Setup

13 Canon EOS digital SLR cameras (EOS 1300D/1500D
with 55mm prime lens) are equipped to take photos. The
resolution of these photos is up to 6000×4000. In order to
ensure the accuracy of the poses of the collected photos, we
elaborately design and build a horizontal semicircular bracket
with a radius of 1.5m, located at the same height as the head.
All cameras are placed on the bracket with 15o interval and
point to the center of the semicircular bracket, as shown in
Fig. 7. Meanwhile, all cameras are connected to one computer
through USB interfaces. We design a software that can control
all cameras to take photos simultaneously. The taken photos
are automatically stored on the hard drive.

We also use 7 flashes for illuminations. These flashes are
placed on the above, front, front-above, front-below, behind,
left and right, respectively. By turning on one flash and
turning off the others, we can simulate different weak lighting
conditions. Besides, a chair is placed in the center of the
semicircular bracket to fix the pose of the participants. Further-
more, we set a uniform white background for the acquisition
environment.

B. Data Acquisition

We invite a total of 500 participants and all of them have
signed data acquisition licenses before taking photos. Each
participant is asked to sit down in the chair, and then fine-
tune the height of the chair to ensure the head is at the same
height as cameras. During the process of data acquisition, the
participant is asked to look into the direction of the camera on
0o (see Fig. 7) and show three facial expressions, including
neutral, smile and surprise, respectively. Each expression is
photographed under all illuminations. The flashes are switched
automatically and quickly to guarantee the consistency of
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−90𝑜 −75𝑜 −60𝑜 −45𝑜
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Fig. 6: Examples (6000×4000 resolution) of the thirteen views from −90o to +90o.

TABLE I: Comparisons of publicly available low-resolution
(the first four databases) and high-resolution (the last five
databases) face manipulation databases. ‘-’ means no label.

Database Images Resolution ID Poses Expressions

PIE [66] 41,000+ 640×486 68 13 4
MultiPIE [15] 750,000+ 640×480 337 15 6
CelebA [61] 202,599 505×606 10,177 - -
CAS-PEAL-R1 [62] 30,863 640×480 1,040 21 5

RaFD [19] 8,040 681×1024 73 5 8
CelebA-HQ [16] 30,000 1024×1024 - - -
FFHQ [17] 70,000 1024×1024 - - -
BioHDD [63] 606 4368×2912 101 3 1

MVF-HQ 120,283 6000×4000 479 13 3

poses and expressions under different illuminations. The ex-
amples of different views, expressions, and illuminations are
displayed in Fig. 6, Fig. 4, and Fig. 5, respectively.

C. Data Processing

After data acquisition, we carefully check each original
image to clean the database. The blurred images and the
images with nonstandard poses are removed from the database.
Ultimately, we select 120, 283 images from 479 identities.
Since it is hard for landmark detection algorithms to accurately
detect landmarks under large poses, we manually mark five
landmarks for the faces with poses of ±60o, ±75o, and ±90o.
The landmarks of other poses are automatically detected by
the algorithm and checked by human. All facial landmarks
will be released along with the MVF-HQ database.

D. Comparisons

Table I presents the comparisons between our MVF-HQ
database and publicly available high-resolution databases. We
observe that MVF-HQ has the following three advantages:
(1) Large-Scale. MVF-HQ consists of 120, 283 images, far
more than other databases (70, 000 at most [17]). (2) High-
Resolution. The high-performance digital SLR camera enables
the obtained images to have a resolution of 6000×4000, while

Background
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Fig. 7: Technical setup.

other high-resolution databases only reach 1024×1024 reso-
lution [16], [17]. (3) Abundant Variants. MVF-HQ contains
diverse poses, expressions, and illuminations.

V. EXPERIMENTS

In this section, we evaluate our method on the MultiPIE
[15], the RaFD [19], the CelebA-HQ [16], and our newly built
MVF-HQ databases. The introductions of these databases,
such as the number of the images, the resolution, and other at-
tributes, are listed in Table I. The details of these databases and
experimental settings are reported in Section V-A. In Section
V-B and Section V-C, extensive qualitative and quantitative
results are provided, respectively. In Section V-D, detailed
experimental analyses are described.

A. Databases and Settings

MultiPIE is a low-resolution multi-view database for face
recognition and synthesis. In our experiments, we adopt two
different settings for quantitative and qualitative experiments,
respectively. For the quantitative recognition experiments, fol-
lowing the Setting 2 protocol of [67], [7], we only use the
faces with the natural expression. 200 subjects are used for
training and the remaining 137 subjects are used for testing.
For the testing set, the first face of each subject is used as
the gallery and the other faces are used as probes. The setting
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Fig. 8: Synthesis results (1024×1024 resolution) on the MVF-HQ database. The lower right corner is the input face.

protocol of our qualitative experiments is mainly based on
the above Setting 2 protocol. The difference is that, besides
the natural expression, we also use the other 5 expressions
for expression editing. All images are aligned and cropped to
128×128 resolution.

RaFD is a high-resolution face database for expression
analysis. It consists of 8 expressions (see Fig. 12) and 5 camera
angles (±90o, ±45o, and 0o). Furthermore, each identity also
contains three different gazed directions (left, frontal, and
right). We randomly select 10 identities as the testing set and
use the remaining identities as the training set. Each image is
aligned and cropped to 512×512 resolution.

CelebA-HQ is a high-quality version of the CelebA
database [61], containing abundant attributes but with low
image quality. As shown in Fig. 2, most of the faces in CelebA-
HQ are nearly frontal, making it hard to edit large pose faces.
In order to enrich the poses of CelebA-HQ, we utilize a 3D
model [68] to create profiles. In addition, given that the created
profiles have many artifacts, as shown in Fig. 15, we only
conduct face frontalization experiments, i.e. rotating profiles

to the frontal view. We randomly choose 3, 000 images as the
testing set and use the remaining images as the training set.
Each image is resized to 512×512 resolution. Furthermore,
considering the abundant pose variants in the CelebA database,
we also verify the effectiveness of our method on it. 2000
images are selected as the testing set. Each image is aligned
and cropped to 128×128 resolution.

MVF-HQ is the newly built high-resolution multi-view face
database, the details of which are reported in Section IV. In
experiments, we randomly select 336 identities as the training
set and the remaining 143 identities as the testing set. There are
no identity overlaps between training and testing. In addition,
due to the limited GPU memory, we only conduct experiments
at 512×512 and 1024×1024 resolutions.

Experimental Settings. For the boundary image, we use an
open-source toolkit [69] to automatically detect 68 landmarks,
and manually check and revise the landmarks with extreme
poses (±60o, ±75o, and ±90o) to ensure the accuracy. The
adjacent landmarks are connected to get the boundary image
that is in RGB format, as shown in Fig. 1. The boundary
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Fig. 9: Continuous pose (the first row) and expression (the second row) synthesis on the MultiPIE database. Only the poses
and expressions with red boxes are in the database. Please zoom in for details.

Input Ground TruthCAPG-GANOursGround TruthCAPG-GANOursInput

Fig. 10: Visualization comparisons between our method and
CAPG-GAN [7] on the MultiPIE database. For fair com-
parison, the two methods adopt same boundary images as
geometry guidance, the same discriminator, and the same
losses except for the feature threshold loss.

image mainly consists of five facial components, including
eyebrows, eyes, nose, mouth, and jaw. These components can
clearly present the pose, the expression, and the shape of
faces. The pose vectors are directly calculated according to the
detected facial landmarks. The expression vectors are denoted
by Action Units (AUs) [70], which are collected by an open-
source toolkit [71]. The pose estimator Fp and the expression
estimator Fe in Section III-A are pre-trained on the above
four databases as well as the large-scale in-the-wild database
CelebA [61]. The dimensionalities of the latent vector z, the
pose vector p, and the expression vector e in Eq. (2) are 128,
3, and 17, respectively. Our discriminator is the same as [10].
The parameters λ1, α1, α2, and α3 in Section III-C are set
to 0.1, 0.01, 50, and 0.02, respectively. The parameter m in
Eq. (3) is set to 7. Adam [72] (β1 = 0.9, β2 = 0.999) is
adopted as the optimizer with a fixed learning rate 0.0002.
The high-resolution experiments on MVF-HQ are conducted
on 8 NVIDIA Titan RTX GPUs with 24GB memory. Training
takes about 12 days for 1024×1024 resolution and about 7
days for 512×512 resolution.

B. Qualitative Experiments

Experimental Results on the MultiPIE database. Accord-
ing to the given conditional vectors, our method can render
an input face to the corresponding poses and expressions.
Another state-of-the-art work to tackle the similar task is
CAPG-GAN [7], which rotates a face to the target pose by
controlling 5 facial landmarks. For fair comparisons, the 5
facial landmarks are replaced with the same boundary images
as our method. Moreover, the discriminator and the losses

Input InputBoundary Ours Ground Truth Boundary Ours Ground Truth

Fig. 11: Synthesis results on the MultiPIE database. The
boundary is generated in our boundary prediction stage.

(except for the feature threshold loss) are also unified. The
comparison results between our method and CAPG-GAN on
the MultiPIE database are shown in Fig. 10. CAPG-GAN
concatenates the input faces and the target facial landmarks in
the image space, and then feeds them into the generator. As
mentioned in Section I, such a concatenation manner cannot
hold the textures well, which is also embodied in Fig. 10.
For example, the details of eyes are somewhat blurry. On the
contrary, the synthesized images of our method are closer to
the ground truth in terms of both structures and textures. We
owe the superiority of our method over CAPG-GAN to the
effective disentanglement in the latent space. In addition, for
CAPG-GAN, the target landmarks are manually given if they
want to manipulate the input faces. Such a manual manner
is difficult and time-consuming. Differently, our method can
flexibly generate desired boundary images with the specified
pose and expression vectors, as shown in Fig. 11. Another
advantage of our method over CAPG-GAN is that, besides
rendering poses, we can also edit facial expressions (see
Fig. 11). We observe that the structures of the synthesized
faces are consistent with the boundary images. At the same
time, the textures of the synthesized images are preserved well,
even under the extreme case.

Fig. 9 further presents the continuous pose and expression
synthesis. All synthesized poses and expressions except for
the three images with red boxes are unseen in the training
stage. The first row displays the results of the continuous
rotation from 18.75o to 56.25o. The angle interval of the
synthesized images is 3.75o, while the angle interval in the
MultiPIE database is 15o. In addition, the second row shows
the continuous expression variation from neutral to scream-
ing. The synthesized expressions are quite vivid. The second
person with neutral expression begins with opening the mouth
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Fig. 12: Facial expression and pose synthesis (512×512 resolution) on the RaFD database. The first column is the input, and
the remaining columns are synthesis results with different expressions and poses.

Input Ground Truthpix2pixHD Ours

Fig. 13: Visualization comparisons (512×512 resolution) with
pix2pixHD [10] on the RaFD database (the first row) and the
MVF-HQ database (the second row).

gradually. Then, the eyebrows are raising and the eyes begin to
close. Ultimately, he makes a scream expression. The results of
the continuous variation demonstrate the generalization ability
of our method.

Experimental Results on the RaFD database. We com-
pare our method with pix2pixHD [10], which is a state-
of-the-art high-resolution conditional image-to-image transla-
tion method. The first row of Fig. 13 plots the expression
manipulation results. We observe that, although this task
only needs to make slight facial changes, pix2pixHD fails
to maintain structures and textures well. The reason may be
that pix2pixHD does not disentangle structures and textures.
Contrastively, our method gets much better synthesis results.
Moreover, in Fig. 12, we also show the synthesis results of
angry, contemptuous, disgusted, fearful, happy, sad, and sur-
prised expressions, respectively. Each synthesized expression
is vivid and matches the target expression label. Besides, in
the last column of Fig. 12, we also present the high-quality
synthesis results of the joint pose and expression variation.
The high quality of the synthesized images indicates the good
performance of our method.

Experimental Results on the MVF-HQ database. The

Input Ours CAPG-GAN Input Ours CAPG-GAN

Fig. 14: Visualization comparisons (512×512 resolution) be-
tween our method and CAPG-GAN on the MVF-HQ database.
Please zoom in for details.

second row of Fig. 13 plots the visualization comparisons
between our method and pix2pixHD. For the synthesized
image of pix2pixHD, the local structures, such as the out-
line of eyes, are unclear, and the facial textures are blurry.
Conversely, our synthesized image has clear structures and
realistic textures. Furthermore, we discover that the result of
our method on the MVF-HQ database is much better than
that on the RaFD database. This is because that the MVF-
HQ database contains more data (about 120k images) than the
RaFD database (about 8k images). It is rather challenging to
synthesize high-resolution results with limited training images.

Fig. 14 shows the comparison results between our method
and CAPG-GAN on the MVF-HQ database. Same as the
experiments on the MultiPIE database, we also unify the
the geometry guidance, the discriminator, and the losses.
We can see that our method displays significant advantages
than CAPG-GAN in such high-resolution cases. Compared
with our results, the synthesis results of CAPG-GAN have
neither clear local structures (e.g. the structure of the eyes)
nor realistic textures, especially at large poses. These results
demonstrate that it is really infeasible to directly apply the
existing low-resolution method to the high-resolution extreme
face manipulation.

In Fig. 8, we present more synthesis results (1024×1024
resolution) of different poses and expressions on the MVF-
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Fig. 15: Synthesis results (512×512 resolution) on the CelebA-HQ database. The lower right corner shows the created profile.

Fig. 16: Synthesis results on the CelebA database. (a) Diverse
face manipulation results. (b) Multiple manipulations of one
input image.

HQ database. We observe that our method obtains satisfactory
results, such as recovering the unseen ears of the third face
in the first row. More synthesized details, such as the double
eyelids of the first face image in the third row, demonstrate
the superiority of our method.

Experimental Results on the CelebA-HQ database. All
the above face manipulation databases are in the controlled en-
vironment. In order to explore the expansibility of our method
under the in-the-wild situation, we conduct experiments on
the CelebA-HQ database. As stated in Section V-A, most of
the images in CelebA-HQ are nearly frontal. The profiles
are created by a 3D model and have too many artifacts. In
this case, we only conduct face frontalization experiments.
Due to the effects of uncontrolled variants, such as diverse
illuminations and backgrounds, it is challenging to perform
high-resolution face frontalization under the in-the-wild set-
ting. Fig. 15 shows the results of the synthesized frontal faces.
Although the created profiles have massive artifacts and lose
many facial textures, our method successfully eliminates the
artifacts and completes the lost textures.

We further perform experiments on the original version of
the CelebA-HQ database, i.e. the CelebA database [61] that
has abundant poses but with lower image quality. Fig. 16
(a) plots the manipulation results with diverse poses, from
which we observe that our method has the ability to rotate
extreme poses, such as the first set of images. Nevertheless,
since the training set of the CelebA database has massive
low-quality images, the synthesized images inevitably appear
some artifacts. For example, there are some artifacts in the
outlines of the two profile faces in the bottom left. Fig. 16
(b) presents the results of multiple manipulations of one input
face. The above visualization results demonstrate the superior
performance of our method in the uncontrolled environment.

C. Quantitative Experiments

In this subsection, we quantitatively evaluate the identity
preserving property and the synthesis quality of our method.
As shown in Fig. 11, our method effectively recovers struc-
tures and textures from the profiles, which can be used to
improve the performance of face recognition under large poses
[7]. Therefore, we compare the recognition accuracy of our
method with that of the state-of-the-art face frontalization
methods, including DA-GAN [31], 3D-PIM [73], CAPG-
GAN [7], PIM [74], TP-GAN [6], FF-GAN [75], and DR-
GAN [29] on the MultiPIE Setting 2 protocol. The probe
set consists of profiles with various views and the gallery
set only contains one frontal face per subject. The profiles
in the probe set are frontalized by the above methods, and
the pre-trained LightCNN [64] is used to extract features.
Cosine distances are calculated as the similarities to obtain the
Rank-1 accuracies, the comparisons of which are tabulated in
Table II. ‘LightCNN’ means evaluation on the original profiles
via the pre-trained LightCNN model. ‘Ours’ means calculating
the Rank-1 accuracy on the synthesized frontal faces by the
same LightCNN model. We observe that as the face angle
increases, the accuracies of all the methods drop gradually. The
degradation may be caused by the loss of facial appearance
of profiles. Furthermore, the Rank-1 accuracies of all the
methods are comparable under small poses (±15o, ±30o, and
±45o). But at the larger poses, the superiority of our method
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Fig. 17: Visualization results (512×512 resolution) of the ablation study: comparisons between our method and its five variants.
Please zoom in for details.

TABLE II: Comparisons of Rank-1 recognition rates (%)
across views under the MultiPIE Setting 2.

Method ±15o ±30o ±45o ±60o ±75o ±90o

DR-GAN [29] 94.0 90.1 86.2 83.2 - -
FF-GAN [75] 94.6 92.5 89.7 85.2 77.2 61.2
TP-GAN [6] 98.6 98.0 95.3 87.7 77.4 64.6
PIM [74] 99.3 99.0 98.5 98.1 95.0 86.5
CAPG-GAN [7] 99.8 99.5 97.3 90.6 83.0 66.0
3D-PIM [73] 99.6 99.4 98.8 98.3 95.2 86.7
DA-GAN [31] 99.9 99.8 99.1 97.2 93.2 81.5

LightCNN [64] 98.5 97.3 92.1 62.0 24.1 5.5
Ours 99.9 99.9 99.4 98.7 96.3 87.4

TABLE III: Comparisons of FID (lower is better) and Rank-1
recognition rates (%) on the MVF-HQ database.

Method FID ±15o ±30o ±45o ±60o ±75o ±90o

CAPG-GAN [7] 36.68 99.9 99.9 99.4 95.2 82.1 53.7
pix2pixHD [10] 45.62 98.5 97.5 93.3 86.1 67.4 39.0
pix2pixHD+boundary 43.37 99.2 98.1 94.5 87.3 68.7 40.3

LightCNN [64] - 100 100 99.6 95.7 65.2 23.9
Ours 12.94 100 100 99.6 96.5 84.6 60.4

is obvious. Particularly, our method significantly improves the
accuracy under the challenging ±90o, and obtains the best
performance compared with other state-of-the-art methods.

The settings of the probe and the gallery of our MVF-
HQ database are analogous to the MultiPIE database.
Table III shows the comparison results of our method
against other state-of-the-art methods, including pix2pixHD
(‘pix2pixHD+boundary’ denotes concatenating the face image
with a boundary image, which is generated by the boundary
prediction stage, as the input of pix2pixHD) and CAPG-GAN.
It is obvious that our method outperforms its competitors by
a large margin under the extreme poses (±75o and ±90o).
We owe the significant improvements to the introduced proxy
network and the feature threshold loss, which disentangle
structures and textures in the latent space. The quantitative
recognition results are consistent with the qualitative visualiza-
tion results in Fig. 10 and Fig. 13. The recognition results on
MultiPIE and MVF-HQ prove that our method can effectively
improve the recognition performance under large poses.

Furthermore, in order to evaluate the quality of the syn-

TABLE IV: Quantitative results of the ablation study on the
MVF-HQ database.

Method FID ±15o ±30o ±45o ±60o ±75o ±90o

w/o Lthr 36.71 96.2 90.7 77.3 67.1 55.6 47.6
w/o Ladv 53.92 98.5 96.1 87.9 80.3 68.4 50.3
w/o Lip 21.34 88.7 81.5 75.3 65.4 50.7 45.5
w/o Lpix-mul 34.34 98.3 94.3 82.4 81.6 71.3 55.7

Ours 12.94 100 100 99.6 96.5 84.6 60.4

thesized images, we compare the Fréchet Inception Distance
(FID) results [76] with CAPG-GAN and pix2pixHD. FID is
used to measure the distance between the real faces and the
synthesized faces. The results in Table III qualitatively reveal
the high-quality synthesis character of our method.

D. Experimental Analysis

Ablation Study. In this part, we investigate the roles of the
five loss functions in our method, including the conditional
regression loss Lreg in Eq. (2), the feature threshold loss Lthr
in Eq. (3), the multi-scale pixel-wise Lpix-mul loss in Eq. (4),
the conditional adversarial loss Ladv in Eq. (5), and the identity
preserving loss Lip in Eq. (6). Both qualitative and quantitative
experimental results are reported for better comparisons.

Fig. 17 shows the qualitative visualization results of our
method and its five variants. We discover that without Lreg, the
generated boundary images are unsatisfactory, when the given
conditional vectors are not completely consistent with those
in the databases. The outlines of many facial components,
such as the nose and jaw, are unclear, resulting in incomplete
synthesized faces. It demonstrates the effectiveness of the
conditional regression loss Lreg. Without the feature threshold
loss Lthr, the local structures, e.g. the eyes and nose, are
unclear and the textures are blurry, indicating the effectiveness
of the disentanglement. Moreover, the parameter m in Lthr
has non-negligible impacts on the synthesis results, which
will be discussed in the following part. Without the multi-
scale pixel-wise loss Lpix-mul (only utilizing one scale pixel-
wise loss), the global structure is clear but the local textures,
e.g. the teeth, are blurry. Hence, the multi-scale pixel-wise
loss Lpix-mul contributes to the recovery of texture details.
Without Ladv, there are many artifacts in the synthesized
images, revealing the validity of the multi-scale conditional
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Fig. 18: Visualization results (512×512 resolution) of the parameter analysis of m in Eq. (3). Please zoom in for details.

Input InputInputSynthesis Synthesis Synthesis

Fig. 19: Synthesis results of the cross-database experiment
(trained on MultiPIE and tested on MVF-HQ).

TABLE V: FID and Rank-1 accuracies (±90o) on the MVF-
HQ database under different values of m in Eq. (3).

m 10 9 8 7 6 5

FID 38.65 23.62 17.63 12.94 20.35 35.43
Rank-1 48.2 54.7 57.3 60.4 56.6 50.7

adversarial loss. Without Lip, the local textures, such as the
beard, are somewhat light. Thus, the identity preserving loss
may be beneficial to the enhancement of local textures.

Table IV further tabulates the FID and Rank-1 results of
different variants of our method. We observe that the FID
will increase and the Rank-1 will decrease if one loss is not
adopted, which are consistent with the qualitative visualization
results in Fig. 17. These qualitative and quantitative results
verify that each component in our method is essential for the
high-resolution extreme face manipulation.

Cross-Database Experiments. Fig. 19 plots the results of
cross-database experiments. That is, the model is trained on the
MultiPIE database and tested on the MVF-HQ database. There
is a large domain gap between the two databases, because
of the differences in the acquisition equipment, participants,
backgrounds, etc. Although the synthesized images on the
MVF-HQ database inevitably bring some domain information
of the MultiPIE database, such as the backgrounds, our method
successfully manipulates the input faces. The results of cross-
database experiments further demonstrate the generalization
ability of our method.

Parameter Analysis. As mentioned in Section III-B, the
value of the parameter m in the feature threshold loss Lthr
(Eq. (3)) has non-negligible effects on the disentanglement.
In Fig. 18, we plot the visualization results under different
values. We observe that when the value of m is too large, the
synthesized faces are blurry due to the weak disentanglement.

On the contrary, when the value of m is too small, the
textures of the synthesized faces will be somewhat lost because
of the too compact texture features. The best results are
obtained when m = 7. In addition, the quantitative FID and
Rank-1 results are listed in Table V. The results of these
quantitative indicators are consistent with the visualization
results in Fig. 18. When m equals 7, we obtain the minimum
FID and the highest accuracy.

VI. CONCLUSION

This paper has developed a stage-wise framework for high-
resolution extreme face manipulation. It simplifies the face
manipulation into two correlated stages: a boundary predic-
tion stage and a disentangled face synthesis stage. The first
stage predicts the boundary image of the target face in a
semi-supervised way. The second stage utilizes the predicted
boundary to perform realistic face synthesis. A proxy network
and a feature threshold loss are introduced to disentangle
structures and textures in the latent space. Furthermore, a new
high-resolution MVF-HQ database has been created, which
consists of 120,283 images at 6000×4000 resolution from
479 identities. It is much larger in scale and much higher
in resolution than publicly available high-resolution face ma-
nipulation databases. In the future, we will continue to collect
more data to further enrich MVF-HQ. Extensive experiments
on four databases show that our method significantly pushes
forward the advance of extreme face manipulation.
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