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Abstract

Heterogeneous Face Recognition (HFR) is a challenging issue because of the large
domain discrepancy and a lack of heterogeneous data. This paper considers HFR
as a dual generation problem, and proposes a novel Dual Variational Generation
(DVG) framework. It generates large-scale new paired heterogeneous images with
the same identity from noise, for the sake of reducing the domain gap of HFR.
Specifically, we first introduce a dual variational autoencoder to represent a joint
distribution of paired heterogeneous images. Then, in order to ensure the identity
consistency of the generated paired heterogeneous images, we impose a distribution
alignment in the latent space and a pairwise identity preserving in the image space.
Moreover, the HFR network reduces the domain discrepancy by constraining the
pairwise feature distances between the generated paired heterogeneous images. Ex-
tensive experiments on four HFR databases show that our method can significantly
improve state-of-the-art results.

1 Introduction

With the development of deep learning, face recognition has made significant progress [34, 2] in recent
years. However, in many real-world applications, such as video surveillance, facial authentication on
mobile devices and computer forensics, it is still a great challenge to match heterogeneous face images
in different modalities, including sketch images [37], near infrared images [24] and polarimetric
thermal images [36]. Heterogeneous face recognition (HFR) has attracted much attention in the face
recognition community. Due to the large domain gap, one challenge is that the face recognition model
trained on VIS data often degrades significantly for HFR. Therefore, lots of cross domain feature
matching methods [10] are introduced to reduce the large domain gap between heterogeneous face
images. However, since it is expensive and time-consuming to collect a large number of heterogeneous
face images, there is no public large-scale heterogeneous face database. With the limited training
data, CNNs trained for HFR often tend to be overfitting.

Recently, the great progress of high-quality face synthesis [38, 5, 33, 39] has made “recognition via
generation” possible. TP-GAN [16] and CAPG-GAN [13] introduce face synthesis to improve the
quantitative performance of large pose face recognition. For HFR, [32] proposes a two-path model
to synthesize VIS images from NIR images. [36] utilizes a GAN based multi-stream feature fusion
technique to generate VIS images from polarimetric thermal faces. However, all these methods are
based on conditional image-to-image translation framework, leading to two potential challenges: 1)
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Figure 1: The diversity comparisons between the conditional image-to-image translation [32] (left
part, the above is the input NIR image and the below is the corresponding translated VIS image) and
our unconditional DVG (right part, all paired heterogeneous images are generated via noise). For the
conditional image-to-image translation methods, given one NIR image, a generator only synthesizes
one new VIS image with same attributes (e.g., the pose and the expression) except for the spectral
information. Differently, DVG generates massive new paired images with rich intra-class diversity
from noise.

Diversity: Given one image, a generator only synthesizes one new image of the target domain [32].
It means such conditional image-to-image translation methods can only generate limited number
of images. In addition, as shown in the left part of Fig. 1, two images before and after translation
have same attributes (e.g., the pose and the expression) except for the spectral information, which
means it is difficult for such conditional image-to-image translation methods to promote intra-class
diversity. In particular, these problems will be very prominent in the low-shot heterogeneous face
recognition, i.e., learning from few heterogeneous data. 2) Consistency: When generating large-scale
samples, it is challenging to guarantee that the synthesized face images belong to the same identity of
the input images. Although identity preserving loss [13] constrains the distances between features of
the input and synthesized images, it does not constraint the intra-class and inter-class distances of the
embedding space.

To tackle the above challenges, we propose a novel unconditional Dual Variational Generation (DVG)
framework (shown in Fig. 3) that generates large-scale paired heterogeneous images with the same
identity from noise. Unconditional generative models can generate new images (generate single
image per time) from noise [21], but since these images do not have identity labels, it is difficult
to use these images for recognition networks. DVG makes use of the property of generating new
images of the unconditional generative model [21], and adopts a dual generation manner to get
paired heterogeneous images with the same identity every time. This enables DVG to generate
large-scale images, and make the generated images can be used to optimize recognition networks.
Meanwhile, DVG also absorbs the various intra-class changes of the training database, leading to
the generated paired images have abundant intra-class diversity. For instance, as presented in the
right part of Fig. 1, the first four paired images have different poses, and the fifth paired images
have different expressions. Furthermore, DVG only pays attention to the identity consistency of
the paired heterogeneous images rather than the identity whom the paired heterogeneous images
belong to, which avoids the consistency problem of previous methods. Specifically, we introduce a
dual variational autoencoder to learn a joint distribution of paired heterogeneous images. In order to
constrain the generated paired images to belong to the same identity, we impose both a distribution
alignment in the latent space and a pairwise identity preserving in the image space. New paired
images are generated by sampling and copying a noise from a standard Gaussian distribution, as
displayed in the left part of Fig. 3. These generated paired images are used to optimize the HFR
network by a pairwise distance constraint, aiming at reducing the domain discrepancy.

In summary, the main contributions are as follows:

• We provide a new insight into the problems of HFR. That is, we consider HFR as a dual
generation problem, and propose a novel dual variational generation framework. This
framework generates new paired heterogeneous images with abundant intra-class diversity
to reduce the domain gap of HFR.

• In order to guarantee that the generated paired images belong to the same identity, we
constrain the consistency of paired images in both latent space and image space. These
allow new images sampled from the noise can be used for recognition networks.
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Figure 2: The dual generation results via noise (256× 256 resolution). For each pair, the left is NIR
and the right is the paired VIS image.

• We can sample large-scale diverse paired heterogeneous images from noise. By constraining
the pairwise feature distances of the generated paired images in the HFR network, the
domain discrepancy is effectively reduced.

• Experiments on the CASIA NIR-VIS 2.0, the Oulu-CASIA NIR-VIS, the BUAA-VisNir and
the IIIT-D Viewed Sketch databases demonstrate that our method can generate photo-realistic
images, and significantly improve the performance of recognition.

2 Background and Related Work

2.1 Heterogeneous Face Recognition

Lots of researchers pay their attention to Heterogeneous Face Recognition (HFR). For the feature-level
learning, [22] employs HOG features with sparse representation for HFR. [7] utilizes LBP histogram
with Linear Discriminant Analysis to obtain domain-invariant features. [10] proposes Invariant Deep
Representation (IDR) to disentangle representations into two orthogonal subspaces for NIR-VIS HFR.
Further, [11] extends IDR by introducing Wasserstein distance to obtain domain invariant features
for HFR. For the image-level learning, the common idea is to transform heterogeneous face images
from one modality into another one via image synthesis. [19] utilizes joint dictionary learning to
reconstruct face images for boosting the performance of face matching. [23] proposes a cross-spectral
hallucination and low-rank embedding to synthesize a heterogeneous image in a patch way.

2.2 Generative Models

Variational autoencoders (VAEs) [21] and generative adversarial networks (GANs) [6] are the most
prominent generative models. VAEs consist of an encoder network qφ(z|x) and a decoder network
pθ(x|z). qφ(z|x) maps input images x to the latent variables z that match to a prior p(z), and pθ(x|z)
samples images x from the latent variables z. The evidence lower bound objective (ELBO) of VAEs:

log pθ(x) ≥ Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x)||p(z)). (1)

The two parts in ELBO are a reconstruction error and a Kullback-Leibler divergence, respectively.

Differently, GANs adopt a generator G and a discriminator D to play a min-max game. G generates
images from a prior p(z) to confuse D, and D is trained to distinguish between generated data and
real data. This adversarial rule takes the form:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] . (2)

They have achieved remarkable success in various applications, such as unconditional image genera-
tion that generates images from noise [20, 15], and conditional image generation that synthesizes
images according to the given condition [32, 16]. According to [15], VAEs have nice manifold
representations, while GANs are better at generating sharper images.

Another work to address the similar problem of our method is CoGAN [25], which uses a weight-
sharing manner to generate paired images in two different modalities. However, CoGAN neither
explicitly constrains the identity consistency of paired images in the latent space nor in the image
space. It is challenging for the weight-sharing manner of CoGAN to generate paired images with the
same identity, as shown in Fig. 4.
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Figure 3: The purpose (left part) and training model (right part) of our unconditional DVG framework.
DVG generates large-scale new paired heterogeneous images with the same identity from standard
Gaussian noise, aiming at reducing the domain discrepancy for HFR. In order to achieve this purpose,
we elaborately design a dual variational autoencoder. Given a pair of heterogeneous images from
the same identity, the dual variational autoencoder learns a joint distribution in the latent space. In
order to guarantee the identity consistency of the generated paired images, we impose a distribution
alignment in the latent space and a pairwise identity preserving in the image space.

3 Proposed Method

In this section, we will introduce our method in detail, including the dual variational generation and
heterogeneous face recognition. Note that we specifically discuss the NIR-VIS images for better
presentation. Other heterogeneous images are also applicable.

3.1 Dual Variational Generation

As shown in the right part of Fig. 3, DVG consists of a feature extractor Fip, and a dual variational
autoencoder: two encoder networks and a decoder network, all of which play the same roles of
VAEs [21]. Specifically, Fip extracts the semantic information of the generated images to preserve
the identity information. The encoder network EN maps NIR images xN to a latent space zN =
qφN (zN |xN ) by a reparameterization trick: zN = uN + σN � ε, where uN and σN denote mean
and standard deviation of NIR images, respectively. In addition, ε is sampled from a multi-variate
standard Gaussian and � denotes the Hadamard product. The encoder network EV has the same
manner asEN : zV = qφV (zV |xV ), which is for VIS images xV . After obtaining the two independent
distributions, we concatenate zN and zV to get the joint distribution zI .

Distribution Learning We utilize VAEs to learn the joint distribution of the paired NIR-VIS images.
Given a pair of NIR-VIS images {xN , xV }, we constrain the posterior distribution qφN (zN |xN ) and
qφV (zV |xV ) by the Kullback-Leibler divergence:

Lkl = DKL(qφN (zN |xN )||p(zN )) +DKL(qφV (zV |xV )||p(zV )), (3)

where the prior distributions p(zN ) and p(zV ) are both the multi-variate standard Gaussian dis-
tributions. Like the original VAEs, we require the decoder network pθ(xN , xV |zI) to be able to
reconstruct the input images xN and xV from the learned distribution:

Lrec = −EqφN (zN |xN )∪qφV (zV |xV ) log pθ(xN , xV |zI). (4)

Distribution Alignment We expect a pair of NIR-VIS images {xN , xV } to be projected into a
common latent space by the encoders EN and EV , i.e., the NIR distribution p(z(i)N ) is the same as
the VIS distribution p(z(i)V ), where i denotes the identity information. That means we maintain the
identity consistency of the generated paired images in the latent space. Explicitly, we align the NIR
and VIS distributions by minimizing the Wasserstein distance between the two distributions. Given

two Gaussian distributions p(z(i)N ) = N(u
(i)
N , σ

(i)
N

2
) and p(z(i)V ) = N(u

(i)
V , σ

(i)
V

2
), the 2-Wasserstein

distance between p(z(i)N ) and p(z(i)V ) is simplified [10] as:

Ldist =
1

2

[
||u(i)N − u

(i)
V ||

2
2 + ||σ(i)

N − σ
(i)
V ||

2
2

]
. (5)
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Pairwise Identity Preserving In previous image-to-image translation works [16, 13], identity
preserving is usually introduced to maintain identity information. The traditional approach uses a
pre-trained feature extractor to enforce the features of the generated images to be close to the target
ones. However, since the lack of intra-class and inter-class constraints, it is challenge to guarantee the
synthesized images to belong to the specific categories of the target images. Considering that DVG
generates a pair of heterogeneous images per time, we only need to consider the identity consistency
of the paired images.

Specifically, we adopt Light CNN [34] as the feature extractor Fip to constrain the feature distance
between the reconstructed paired images:

Lip-pair = ||Fip(x̂N )− Fip(x̂V )||22, (6)

where Fip(·) means the normalized output of the last fully connected layer of Fip. In addition, we
also use Fip to make the features of the reconstructed images and the original input images close
enough as previous works [16, 13]:

Lip-rec = ||Fip(x̂N )− Fip(xN )||22 + ||Fip(x̂V )− Fip(xV )||22, (7)

where x̂N and x̂V denote the reconstructions of the input paired images xN and xV , respectively.

Diversity Constraint In order to further increase the diversity of the generated images, we also
introduce a diversity loss [27]. In the sampling stage, when two sampled noise zI1 are zI2 are
close, the generated images xI1 and xI2 are going to be similar. We maximize the following loss to
encourage the decoder DI to generate more diverse images:

Ldiv = max
DI

|Fip(xI1)− Fip(xI2)|
|zI1 − zI2 |

. (8)

Overall Loss Moreover, in order to increase the sharpness of our generated images, we also adopt
an adversarial loss Ladv as [31]. Hence, the overall loss to optimize the dual variational autoencoder
can be formulated as

Lgen = Lrec + Lkl + Ladv + λ1Ldist + λ2Lip-pair + λ3Lip-rec + λ4Ldiv, (9)

where λ1, λ2, λ3 and λ4 are the trade-off parameters.

3.2 Heterogeneous Face Recognition

For the heterogeneous face recognition, our training data contains the original limited labeled data
xi(i ∈ {N,V }) and the large-scale generated unlabeled paired NIR-VIS data x̃i(i ∈ {N,V }). Here,
we define a heterogeneous face recognition network F to extract features fi = F (xi; Θ), where
i ∈ {N,V } and Θ is the parameters of F . For the original labeled NIR and VIS images, we utilize a
softmax loss:

Lcls =
∑

i∈{N,V }

softmax(F (xi; Θ), y), (10)

where y is the label of identity.

For the generated paired heterogeneous images, since they are generated from noise, there are no
specific classes for the paired images. But as mentioned in section 3.1, DVG ensures that the generated
paired images belong to the same identity. Therefore, a pairwise distance loss between the paired
heterogeneous samples is formulated as follows:

Lpair = ||F (x̃N ; Θ)− F (x̃V ; Θ)||22, (11)

In this way, we can efficiently minimize the domain discrepancy by generating large-scale unlabeled
paired heterogeneous images. As stated above, the final loss to optimize for the heterogeneous face
recognition network can be written as

Lhfr = Lcls + α1Lpair, (12)

where α1 is the trade-off parameter.
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Method MD FID Rank-1
CoGAN 0.61 10.6 95.2
VAE 0.54 8.2 94.6
DVG 0.24 7.1 99.2

(a)

Method Rank-1
w/o Ldist 94.3
w/o Lip-pair 96.1
w/o Ldiv 98.5
DVG 99.2

(b)
Table 1: Experimental analyses on the CASIA NIR-VIS 2.0 database. The backbone is LightCNN-9.
(a) The quantitative comparisons of different methods. MD (lower is better) means the mean feature
distance between the generated paired NIR and VIS images. FID (lower is better) is measured based
on the features of LightCNN-9, instead of the traditional Inception model. (b) The ablation study.

4 Experiments

4.1 Databases and Protocols

Three NIR-VIS heterogeneous face databases and one Sketch-Photo heterogeneous face database
are used to evaluate our proposed method. For the NIR-VIS face recognition, following [35], we
report Rank-1 accuracy and verification rate (VR)@false accept rate (FAR) for the CASIA NIR-VIS
2.0 [24], the Oulu-CASIA NIR-VIS [18] and the BUAA-VisNir Face [14] databases. Note that, for
the Oulu-CASIA NIR-VIS database, there are only 20 subjects are selected as the training set. In
addition, the IIIT-D Viewed Sketch database [1] is employed for the Sketch-Photo face recognition.
Due to the few number of images in the IIIT-D Viewed Sketch database, following the protocols
of [3], we use the CUHK Face Sketch FERET (CUFSF) [37] as the training set and report the Rank-1
accuracy and VR@FAR=1% for comparisons.

4.2 Experimental Details

For the dual variational generation, the architectures of the encoder and decoder networks are the
same as [15], and the architecture of our discriminator is the same as [31]. These networks are
trained using Adam optimizer with a fixed rate of 0.0002. Other parameters λ1, λ2, λ3 and λ4 in
Eq. (9) are set to 50, 5, 1000 and 0.2, respectively. For the heterogeneous face recognition, we
utilize both LightCNN-9 and LightCNN-29 [34] as the backbones. The models are pre-trained on the
MS-Celeb-1M database [9] and fine-tuned on the HFR training sets. All the face images are aligned
to 144×144 and randomly cropped to 128×128 as the input for training. Stochastic gradient descent
(SGD) is used as the optimizer, where the momentum is set to 0.9 and weight decay is set to 5e-4.
The learning rate is set to 1e-3 initially and reduced to 5e-4 gradually. The batch size is set to 64 and
the dropout ratio is 0.5. The trade-off parameters α1 in Eq. (12) is set to 0.001 during training.

4.3 Experimental Analyses

In this section, we analyze three metrics, including identity consistency, distribution consistency and
visual quality, to demonstrate the effectiveness of DVG. The compared methods include CoGAN [25]
and VAE [21]. For VAE model, the input is the concatenated NIR-VIS images.

Identity Consistency. In order to analyze the identity consistency, we measure the feature distance
between the generated paired images on the CASIA NIR-VIS 2.0 database. Specifically, we first use
a pre-trained Light CNN-9 [34] to extract features and then measure the mean distance (MD) of the
paired images. The results are reported in Table 1a. MD is computed from 50K generated image pairs
and the MD value of the original database is 0.26. We can clearly see that the MD value of DVG
is even smaller than the original database, which means that our method can effectively guarantee
the identity consistency of the generated paired images. The recognition performance of different
methods is also reported in Table 1a. We can see that DVG correspondingly achieves the best results.

Distribution Consistency. On the CASIA NIR-VIS 2.0 database, we take Fréchet Inception Dis-
tance (FID) [12] to measure the Fréchet distance of two distributions in the feature space, reflecting
the distribution consistency. We first measure the FID between the generated VIS images and the real
VIS images, and the FID between the generated NIR images and the real NIR images, respectively.
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DVGCoGAN VAE
Figure 4: Visual comparisons of dual image generation results on the CASIA NIR-VIS 2.0 database.
The generated paired images of DVG are more similar than those of CoGAN and VAE.

Oulu BUAA CUFSF
Figure 5: The dual generation results on the Oulu-CASIA NIR-VIS, the BUAA-VisNir and the
CUHK Face Sketch FERET (CUFSF) databases.

Then we calculate the mean FID as the final results, which are reported in Table 1a. Considering
that the face recognition network can better extract features of face images, we use a LightCNN-9 to
extract features for calculating FID instead of the traditional Inception model. Similarly, FID results
are computed from 50K generated image pairs. As shown in Table 1a, DVG achieves best results,
demonstrating that DVG has really learned the distributions of two modalities.

Visual Quality. In Fig. 4, we compare the dual generation results (128× 128 resolution) of different
methods on the CASIA NIR-VIS 2.0 database. Our visual results are obviously better than CoGAN
and VAE. Moreover, we can observe that the generated paired images of VAE and CoGAN are not
similar, which leads to worse Rank-1 accuracy during optimizing HFR network (see Table 1a). More
dual generation results of DVG are shown in Fig. 2 (256 × 256 resolution) and Fig. 5.

Ablation Study. Table 1b presents the comparison results of our DVG and its three variants on
the CASIA NIR-VIS 2.0 database. We observe that the recognition performance will decrease if
one component is not adopted. Particularly, the accuracy drops significantly when the distribution
alignment loss Ldist or the pairwise identity preserving loss Lip-pair are not used. These results suggest
that every component is crucial in our model.

Moreover, we analyze how the number of generated samples influence the HFR network on the
Oulu-CASIA NIR-VIS database that only contains 20 identities with about 1,000 images for training.
We generate 1K, 5K, 10K and 50K pairs of heterogeneous images via DVG, and we obtain 68.7%,
85.9%, 89.5% and 89.4% on VR@FAR=0.1% by LightCNN-9, respectively. The results have been
significantly improved with the increasing number of the generated pairs, suggesting that DVG can
boost the performance of the low-shot heterogeneous face recognition.

4.4 Comparisons with State-of-the-art Methods

The recognition performance of our proposed DVG is demonstrated in this section on four heteroge-
neous face recognition databases. The performance of state-of-the-art methods, such as IDNet [29],
HFR-CNN [30], Hallucination [23], DLFace [28], TRIVET [26], IDR [10], W-CNN [11], RCN [4],
MC-CNN [3] and DVR [35] is compared in Table 2. In addition, LightCNN-9 and LightCNN-29 are
our baseline methods.
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Method CASIA NIR-VIS 2.0 Oulu-CASIA NIR-VIS BUAA-VisNir IIIT-D Viewed Sketch
Rank-1 FAR=0.1% Rank-1 FAR=1% FAR=0.1% Rank-1 FAR=1% FAR=0.1% Rank-1 FAR=1%

IDNet [29] 87.1± 0.9 74.5 - - - - - - - -
HFR-CNN [30] 85.9± 0.9 78.0 - - - - - - - -

Hallucination [23] 89.6± 0.9 - - - - - - - - -
DLFace [28] 98.68 - - - - - - - - -
TRIVET [26] 95.7± 0.5 91.0± 1.3 92.2 67.9 33.6 93.9 93.0 80.9 - -

IDR [10] 97.3± 0.4 95.7± 0.7 94.3 73.4 46.2 94.3 93.4 84.7 - -
W-CNN [11] 98.7± 0.3 98.4± 0.4 98.0 81.5 54.6 97.4 96.0 91.9 - -

DVR [35] 99.7± 0.1 99.6± 0.3 100.0 97.2 84.9 99.2 98.5 96.9 - -
RCN [4] 99.3± 0.2 98.7± 0.2 - - - - - - 90.34 -

MC-CNN [3] 99.4± 0.1 99.3± 0.1 - - - - - - 87.40 -
LightCNN-9 97.1± 0.7 93.7± 0.8 93.8 80.4 43.8 94.8 94.3 83.5 84.07 75.30

LightCNN-9 + DVG 99.2± 0.3 98.8± 0.3 100.0 97.6 89.5 98.0 97.1 93.1 86.65 92.24
LightCNN-29 98.1± 0.4 97.4± 0.5 99.0 93.1 68.3 96.8 97.0 89.4 83.24 81.04

LightCNN-29 + DVG 99.8± 0.1 99.8± 0.1 100.0 98.5 92.9 99.3 98.5 97.3 96.99 97.86

Table 2: Comparisons with other state-of-the-art deep HFR methods on the CASIA NIR-VIS 2.0, the
Oulu-CASIA NIR-VIS, the BUAA-VisNir and the IIIT-D Viewed Sketch databases.
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(b) Oulu-CASIA NIR-VIS ROC
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(c) BUAA-VisNir ROC
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Figure 6: The ROC curves on the CASIA NIR-VIS 2.0, the Oulu-CASIA NIR-VIS and the BUAA-
VisNir databases, respectively

For the most challenging CASIA NIR-VIS 2.0 database, it is obvious that DVG outperforms other
state-of-the-art methods. We first employ LightCNN-9 as the backbone to perform DVG, which
obtains 99.2% on Rank-1 accuracy and 98.8% on VR@FAR=0.1%. Further, when backbone
changed to more powerful LightCNN-29, DVG obtains 99.8% on Rank-1 accuracy and 99.8%
on VR@FAR=0.1%. Moreover, for BUAA-VisNir Face database, DVG obtains 99.3% on Rank-1
accuracy and 97.3% on VR@FAR=0.1%, which outperforms our baseline LightCNN-29 and other
state-of-the-art methods.

To further analyze the effectiveness of the proposed DVG for low-shot heterogeneous face recognition,
we evaluate DVG on the Oulu-CASIA NIR-VIS and the IIIT-D Viewed Sketch Face databases. As
mentioned in section 4.1, there are fewer identities or images in these two databases. Table 2 presents
the performance of DVG on these two challenging low-shot HFR databases. For the Oulu-CASIA
NIR-VIS database, we observe that DVG with LightCNN-29 significantly boosts the performance
from 84.9% [35] to 92.9% on VR@FAR=0.1%. Besides, for the IIIT-D Viewed Sketch Face database,
DVG also obtains 96.99% on Rank-1 accuracy and 97.86% on VR@FAR=1%, which significantly
outperform our baseline lightCNN-29 and state-of-the-art methods including RCN and MC-CNN by
a large margin.

Fig. 6 presents the ROC curves, including TRIVET, IDR, W-CNN, DVR, and the proposed DVG.
To better demonstrate the results, we only perform ROC curves of DVG trained on LightCNN-
29. It is obvious that DVG outperforms other state-of-the-art methods, especially on the low shot
heterogeneous databases such as the Oulu-CASIA NIR-VIS database.

Expect for the above commonly used NIR-VIS and Sketch-Photo, we further explore other potential
applications, including the face recognition under different resolutions on the NJU-ID database [17]
and different poses on the Multi-PIE database [8]. The NJU-ID database consists of 256 identities
with one ID card image (102 × 126 resolution) and one camera image (640 × 480 resolution) per
identity. Considering the few number of images in the NJU-ID database, we use our collected
ID-Photo database (1000 identities) as the training set and the NJU-ID database as the testing set.
The Multi-PIE database contains 337 subjects with different poses. We use profiles (±75o,±90o)
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and frontal faces as different modalities. 200 persons are used as the training set and the rest 137
persons are the testing set (Setting 2 of [13]). On the NJU-ID database, we improve Rank-1 by 5.5%
(DVG 96.8% - Baseline 91.3%) and VR@FAR=1% by 6.2% (DVG 96.7% - Baseline 90.5%) over
the baseline LightCNN-29. On the Multi-PIE database, the Rank-1 of ±90o and ±75o is increased
by 18.5% (DVG 83.9% - Baseline 65.4%) and 4.3% (DVG 97.3% - Baseline 93.0%), respectively.
We will continue to explore more applications in our future work.

5 Conclusion

This paper has developed a novel dual variational generation framework that generates large-scale
new paired heterogeneous images with abundant intra-class diversity from noise, providing a new
insight into the problems of HFR. A dual variational autoencoder is first proposed to learn a joint
distribution of paired heterogeneous images. Then, both the distribution alignment in the latent space
and the pairwise distance constraint in the image space are utilized to ensure the identity consistency
of the generated image pairs. Finally, DVG generates diverse paired heterogeneous images with the
same identity from noise to boost HFR network. Extensive qualitative and quantitative experimental
results on four databases have shown the superiority of our method.

Acknowledgments

This work is funded by the National Natural Science Foundation of China (Grants No. 61622310)
and Beijing Natural Science Foundation (Grants No. JQ18017).

References
[1] Himanshu S Bhatt, Samarth Bharadwaj, Richa Singh, and Mayank Vatsa. Memetic approach for matching

sketches with digital face images. Technical report, 2012.
[2] Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for

deep face recognition. In CVPR, 2019.
[3] Zhongying Deng, Xiaojiang Peng, Zhifeng Li, and Yu Qiao. Mutual component convolutional neural

networks for heterogeneous face recognition. TIP, 2019.
[4] Zhongying Deng, Xiaojiang Peng, and Yu Qiao. Residual compensation networks for heterogeneous face

recognition. In AAAI, 2019.
[5] Chaoyou Fu, Yibo Hu, Xiang Wu, Guoli Wang, Qian Zhang, and Ran He. High fidelity face manipulation

with extreme pose and expression. arXiv:1903.12003, 2019.
[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. In NeurIPS, 2014.
[7] Debaditya Goswami, Chi-Ho Chan, David Windridge, and Josef Kittler. Evaluation of face recognition

system in heterogeneous environments (visible vs nir). In ICCV Workshops, 2011.
[8] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade, and Simon Baker. Multi-pie. Image and Vision

Computing, 2010.
[9] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset and

benchmark for large-scale face recognition. In ECCV, 2016.
[10] Ran He, Xiang Wu, Zhenan Sun, and Tieniu Tan. Learning invariant deep representation for NIR-VIS face

recognition. In AAAI, 2017.
[11] Ran He, Xiang Wu, Zhenan Sun, and Tieniu Tan. Wasserstein CNN: learning invariant features for

NIR-VIS face recognition. TPAMI, 2018.
[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a nash equilibrium. In NeurIPS,
2017.

[13] Yibo Hu, Xiang Wu, Bing Yu, Ran He, and Zhenan Sun. Pose-guided photorealistic face rotation. In
CVPR, 2018.

[14] Di Huang, Jia Sun, and Yunhong Wang. The BUAA-VisNir face database instructions. Technical report,
2012.

[15] Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, and Tieniu Tan. Introvae: Introspective variational
autoencoders for photographic image synthesis. In NeurIPS, 2018.

[16] Rui Huang, Shu Zhang, Tianyu Li, and Ran He. Beyond face rotation: Global and local perception gan for
photorealistic and identity preserving frontal view synthesis. In ICCV, 2017.

[17] Jing Huo, Yang Gao, Yinghuan Shi, Wanqi Yang, and Hujun Yin. Heterogeneous face recognition by
margin-based cross-modality metric learning. IEEE Transactions on Cybernetics, 2017.

[18] Jie Chen, D. Yi, Jimei Yang, Guoying Zhao, S. Z. Li, and M. Pietikainen. Learning mappings for face
synthesis from near infrared to visual light images. In CVPR, 2009.

9



[19] Felix Juefei-Xu, Dipan K. Pal, and Marios Savvides. Nir-vis heterogeneous face recognition via cross-
spectral joint dictionary learning and reconstruction. In CVPR Workshops, 2015.

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. In ICLR, 2018.

[21] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
[22] Brendan Klare, Zhifeng Li, and Anil K. Jain. Matching forensic sketches to mug shot photos. TPAMI,

2011.
[23] José Lezama, Qiang Qiu, and Guillermo Sapiro. Not afraid of the dark: Nir-vis face recognition via

cross-spectral hallucination and low-rank embedding. In CVPR, 2017.
[24] Stan Z. Li, Dong Yi, Zhen Lei, and Shengcai Liao. The casia nir-vis 2.0 face database. In CVPR Workshops,

2013.
[25] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In NeurIPS, 2016.
[26] Xiaoxiang Liu, Lingxiao Song, Xiang Wu, and Tieniu Tan. Transferring deep representation for nir-vis

heterogeneous face recognition. In ICB, 2016.
[27] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang. Mode seeking generative

adversarial networks for diverse image synthesis. In CVPR, 2019.
[28] Chunlei Peng, Nannan Wang, Jie Li, and Xinbo Gao. Dlface: Deep local descriptor for cross-modality face

recognition. PR, 2019.
[29] Christopher Reale, Nasser M. Nasrabadi, Heesung Kwon, and Rama Chellappa. Seeing the forest from the

trees: A holistic approach to near-infrared heterogeneous face recognition. In CVPR Workshops, 2016.
[30] Shreyas Saxena and Jakob Verbeek. Heterogeneous face recognition with cnns. In ECCV Workshops, 2016.
[31] Zhixin Shu, Mihir Sahasrabudhe, Rıza Alp Güler, Dimitris Samaras, Nikos Paragios, and Iasonas Kokkinos.

Deforming autoencoders: Unsupervised disentangling of shape and appearance. In ECCV, 2018.
[32] Lingxiao Song, Man Zhang, Xiang Wu, and Ran He. Adversarial discriminative heterogeneous face

recognition. In AAAI, 2018.
[33] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning gan for pose-invariant face

recognition. In CVPR, 2017.
[34] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A light cnn for deep face representation with noisy labels.

TIFS, 2018.
[35] Xiang Wu, Huaibo Huang, Vishal M. Patel, Ran He, and Zhenan Sun. Disentangled variational representa-

tion for heterogeneous face recognition. In AAAI, 2019.
[36] He Zhang, Benjamin S. Riggan, Shuowen Hu, Nathaniel J. Short, and Vishal M. Patel. Synthesis of

high-quality visible faces from polarimetric thermal faces using generative adversarial networks. IJCV,
2019.

[37] Wei Zhang, Xiaogang Wang, and Xiaoou Tang. Coupled information-theoretic encoding for face photo-
sketch recognition. In CVPR, 2011.

[38] Jian Zhao, Yu Cheng, Yan Xu, Lin Xiong, Jianshu Li, Fang Zhao, Karlekar Jayashree, Sugiri Pranata,
Shengmei Shen, Junliang Xing, Shuicheng Yan, and Jiashi Feng. Towards pose invariant face recognition
in the wild. In CVPR, 2018.

[39] Jian Zhao, Lin Xiong, Yu Cheng, Yi Cheng, Jianshu Li, Li Zhou, Yan Xu, Jayashree Karlekar, Sugiri
Pranata, Shengmei Shen, Junliang Xing, Shuicheng Yan, and Jiashi Feng. 3d-aided deep pose-invariant
face recognition. In IJCAI, 2018.

10


	Introduction
	Background and Related Work
	Heterogeneous Face Recognition
	Generative Models

	Proposed Method
	Dual Variational Generation
	Heterogeneous Face Recognition

	Experiments
	Databases and Protocols
	Experimental Details
	Experimental Analyses
	Comparisons with State-of-the-art Methods

	Conclusion

